340 research outputs found

    A positive feedback to climate change: The effect of temperature on the respiration of key wood-decomposing fungi does not decline with time

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are openly available in Dryad at 10.5061/dryad.t1g1jwt7fHeterotrophic soil microorganisms are responsible for ~50% of the carbon dioxide released by respiration from the terrestrial biosphere each year. The respiratory response of soil microbial communities to warming, and the control mechanisms, remains uncertain, yet is critical to understanding the future land carbon (C)-climate feedback. Individuals of nine species of fungi decomposing wood were exposed to 90 days of cooling to evaluate the medium-term effect of temperature on respiration. Overall, the effect of temperature on respiration increased in the medium term, with no evidence of compensation. However, the increasing effect of temperature on respiration was lost after correcting for changes in biomass. These results indicate that C loss through respiration of wood-decomposing fungi will increase beyond the direct effects of temperature on respiration, potentially promoting greater C losses from terrestrial ecosystems and a positive feedback to climate change.Natural Environment Research Council (NERC

    Assessing the performance of a Fasciola gigantica serum antibody ELISA to estimate prevalence in cattle in Cameroon

    Get PDF
    BACKGROUND:Cattle rearing in Cameroon is both economically and culturally important, however parasitic diseases detrimentally impact cattle productivity. In sub-Saharan Africa bovine fasciolosis is generally attributed to F. gigantica, although understanding of Fasciola species present and local epidemiology in individual countries is patchy. Partly limited by the lack of representative surveys and understanding of diagnostic test perfromance in local cattle populations. The aims of this paper were to determine the Fasciola species infecting cattle, develop a species specific serum antibody ELISA, assess the performance of the ELISA and use it to assess the prevalence of F. gigantica exposure in two important cattle-rearing areas of Cameroon. RESULTS:A random sample of Fasciola parasites were collected and were all identified as F. gigantica (100%, CI:94.0-100%, n = 60) using RAPD-PCR analysis. A F. gigantica antibody ELISA was developed and initially a diagnostic cut-off was determined using a sample of known positive and negative cattle. The initial cut-off was used as starting point to estimate an optimal cut-off to estimate the best combination of sensitivity and specificity. This was achieved through sampling a naturally infected population with known infection status (cattle slaughtered at Bamenda abattoir, North West Region (n = 1112) and Ngaoundere abattoir, Vina Division, Adamawa Region (n = 776) in Cameroon). These cattle were tested and results analysed using a Bayesian non-gold standard method. The optimal cut-off was 23.5, which gave a sensitivity of 65.3% and a specificity of 65.2%. The prevalence of exposure to F. gigantica was higher in cattle in Ngaoundere (56.4% CI: 50.2-60.0%) than Bamenda (0.6% CI: 0.0-1.4%). CONCLUSION:Fasciola gigantica was identified as the predominant Fasciola species in Cameroon. Although the sensitivity and specificity F. gigantica antibody ELISA requires improvement, the test has shown to be a potentially useful tool in epidemiological studies. Highlighting the need for better understanding of the impact of F. gigantica infections on cattle production in Cameroon to improve cattle production in the pastoral systems of Central-West Africa. This paper also highlights that non-gold standard latent class methods are useful for assessing diagnostic test performance in naturally-infected animal populations in resource limited settings

    Assessment of risk of insect-resistant transgenic crops to nontarget arthropods

    Get PDF
    An international initiative is developing a scientifically rigorous approach to evaluate the potential risks to nontarget arthropods (NTAs) posed by insect-resistant, genetically modified (IRGM) crops. It adapts the tiered approach to risk assessment that is used internationally within regulatory toxicology and environmental sciences. The approach focuses on the formulation and testing of clearly stated risk hypotheses, making maximum use of available data and using formal decision guidelines to progress between testing stages (or tiers). It is intended to provide guidance to regulatory agencies that are currently developing their own NTA risk assessment guidelines for IRGM crops and to help harmonize regulatory requirements between different countries and different regions of the world

    TorsinA and the TorsinA-Interacting Protein Printor Have No Impact on Endoplasmic Reticulum Stress or Protein Trafficking in Yeast

    Get PDF
    Early-onset torsion dystonia is a severe, life-long disease that leads to loss of motor control and involuntary muscle contractions. While the molecular etiology of the disease is not fully understood, a mutation in an AAA+ ATPase, torsinA, has been linked to disease onset. Previous work on torsinA has shown that it localizes to the endoplasmic reticulum, where there is evidence that it plays roles in protein trafficking, and potentially also protein folding. Given the high level of evolutionary conservation among proteins involved in these processes, the ability of human such proteins to function effectively in yeast, as well as the previous successes achieved in examining other proteins involved in complex human diseases in yeast, we hypothesized that Saccharomyces cerevisiae might represent a useful model system for studying torsinA function and the effects of its mutants. Since torsinA is proposed to function in protein homeostasis, we tested cells for their ability to respond to various stressors, using a fluorescent reporter to measure the unfolded protein response, as well as their rate of protein secretion. TorsinA did not impact these processes, even after co-expression of its recently identified interacting partner, printor. In light of these findings, we propose that yeast may lack an additional cofactor necessary for torsinA function or proteins required for essential post-translational modifications of torsinA. Alternatively, torsinA may not function in endoplasmic reticulum protein homeostasis. The strains and assays we describe may provide useful tools for identifying and investigating these possibilities and are freely available.Howard Hughes Medical InstituteBachmann-Strauss Dystonia and Parkinson Foundatio

    Pars plana vitrectomy for diabetic macular edema. Internal limiting membrane delamination vs posterior hyaloid removal. A prospective randomized trial

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.BACKGROUND: Diabetes mellitus, as well as subsequent ocular complications such as cystoid macular edema (CME), are of fundametal socio-economic relevance. Therefore, we evaluated the influence of internal limiting membrane (ILM) removal on longterm morphological and functional outcome in patients with diabetes mellitus (DM) type 2 and chronic CME without evident vitreomacular traction. METHOD: Forty eyes with attached posterior hyaloid were included in this prospective trial and randomized intraoperatively. Prior focal (n = 31) or panretinal (n = 25) laser coagulation was permitted. Group I (n = 19 patients) underwent surgical induction of posterior vitreous detachment (PVD), group II (n = 20 patients) PVD and removal of the ILM. Eleven patients with detached posterior hyaloid (group III) were not randomized, and ILM removal was performed. One eye had to be excluded from further analysis. Examinations included ETDRS best-corrected visual acuity (BCVA), fluorescein angiography (FLA) and OCT at baseline, 3 and 6 months postoperatively. Main outcome measure was BCVA at 6 months, secondary was foveal thickness. RESULTS: Mean BCVA over 6 months remained unchanged in 85% of patients of group II, and decreased in 53% of patients of group I. Results were not statistically significant different [group I: mean decrease log MAR 95% CI (0.06; 0.32), group II: (-0.02; 0.11)]. OCT revealed a significantly greater reduction of foveal thickness following PVD with ILM removal [group I: mean change: 95% CI (-208.95 μm; -78.05 μm), group II: (-80.90 μm: +59.17 μm)]. CONCLUSION: Vitrectomy, PVD with or without ILM removal does not improve vision in patients with DM type 2 and cystoid diabetic macular edema without evident vitreoretinal traction. ILM delamination shows improved morphological results, and appears to be beneficial in eyes with preexisting PVD

    B Cell Activating Factor (BAFF) and T Cells Cooperate to Breach B Cell Tolerance in Lupus-Prone New Zealand Black (NZB) Mice

    Get PDF
    The presence of autoantibodies in New Zealand Black (NZB) mice suggests a B cell tolerance defect however the nature of this defect is unknown. To determine whether defects in B cell anergy contribute to the autoimmune phenotype in NZB mice, soluble hen egg lysozyme (sHEL) and anti-HEL Ig transgenes were bred onto the NZB background to generate double transgenic (dTg) mice. NZB dTg mice had elevated levels of anti-HEL antibodies, despite apparently normal B cell functional anergy in-vitro. NZB dTg B cells also demonstrated increased survival and abnormal entry into the follicular compartment following transfer into sHEL mice. Since this process is dependent on BAFF, BAFF serum and mRNA levels were assessed and were found to be significantly elevated in NZB dTg mice. Treatment of NZB sHEL recipient mice with TACI-Ig reduced NZB dTg B cell survival following adoptive transfer, confirming the role of BAFF in this process. Although NZB mice had modestly elevated BAFF, the enhanced NZB B cell survival response appeared to result from an altered response to BAFF. In contrast, T cell blockade had a minimal effect on B cell survival, but inhibited anti-HEL antibody production. The findings suggest that the modest BAFF elevations in NZB mice are sufficient to perturb B cell tolerance, particularly when acting in concert with B cell functional abnormalities and T cell help

    Monocytes Contribute to Differential Immune Pressure on R5 versus X4 HIV through the Adipocytokine Visfatin/NAMPT

    Get PDF
    Background: The immune system exerts a diversifying selection pressure on HIV through cellular, humoral and innate mechanisms. This pressure drives viral evolution throughout infection. A better understanding of the natural immune pressure on the virus during infection is warranted, given the clinical interest in eliciting and sustaining an immune response to HIV which can help to control the infection. We undertook to evaluate the potential of the novel HIV-induced, monocyte-derived factor visfatin to modulate viral infection, as part of the innate immune pressure on viral populations. Results: We show that visfatin is capable of selectively inhibiting infection by R5 HIV strains in macrophages and resting PBMC in vitro, while at the same time remaining indifferent to or even favouring infection by X4 strains. Furthermore, visfatin exerts a direct effect on the relative fitness of R5 versus X4 infections in a viral competition setup. Direct interaction of visfatin with the CCR5 receptor is proposed as a putative mechanism for this differential effect. Possible in vivo relevance of visfatin induction is illustrated by its association with the dominance of CXCR4-using HIV in the plasma. Conclusions: As an innate factor produced by monocytes, visfatin is capable of inhibiting infections by R5 but not X4 strains, reflecting a potential selective pressure against R5 viruses. © 2012 Van den Bergh et al.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Generation and Validation of a Shewanella oneidensis MR-1 Clone Set for Protein Expression and Phage Display

    Get PDF
    A comprehensive gene collection for S. oneidensis was constructed using the lambda recombinase (Gateway) cloning system. A total of 3584 individual ORFs (85%) have been successfully cloned into the entry plasmids. To validate the use of the clone set, three sets of ORFs were examined within three different destination vectors constructed in this study. Success rates for heterologous protein expression of S. oneidensis His- or His/GST- tagged proteins in E. coli were approximately 70%. The ArcA and NarP transcription factor proteins were tested in an in vitro binding assay to demonstrate that functional proteins can be successfully produced using the clone set. Further functional validation of the clone set was obtained from phage display experiments in which a phage encoding thioredoxin was successfully isolated from a pool of 80 different clones after three rounds of biopanning using immobilized anti-thioredoxin antibody as a target. This clone set complements existing genomic (e.g., whole-genome microarray) and other proteomic tools (e.g., mass spectrometry-based proteomic analysis), and facilitates a wide variety of integrated studies, including protein expression, purification, and functional analyses of proteins both in vivo and in vitro

    Amyloid-Like Aggregates of the Yeast Prion Protein Ure2 Enter Vertebrate Cells by Specific Endocytotic Pathways and Induce Apoptosis

    Get PDF
    BACKGROUND: A number of amyloid diseases involve deposition of extracellular protein aggregates, which are implicated in mechanisms of cell damage and death. However, the mechanisms involved remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we use the yeast prion protein Ure2 as a generic model to investigate how amyloid-like protein aggregates can enter mammalian cells and convey cytotoxicity. The effect of three different states of Ure2 protein (native dimer, protofibrils and mature fibrils) was tested on four mammalian cell lines (SH-SY5Y, MES23.5, HEK-293 and HeLa) when added extracellularly to the medium. Immunofluorescence using a polyclonal antibody against Ure2 showed that all three protein states could enter the four cell lines. In each case, protofibrils significantly inhibited the growth of the cells in a dose-dependent manner, fibrils showed less toxicity than protofibrils, while the native state had no effect on cell growth. This suggests that the structural differences between the three protein states lead to their different effects upon cells. Protofibrils of Ure2 increased membrane conductivity, altered calcium homeostasis, and ultimately induced apoptosis. The use of standard inhibitors suggested uptake into mammalian cells might occur via receptor-mediated endocytosis. In order to investigate this further, we used the chicken DT40 B cell line DKOR, which allows conditional expression of clathrin. Uptake into the DKOR cell-line was reduced when clathrin expression was repressed suggesting similarities between the mechanism of PrP uptake and the mechanism observed here for Ure2. CONCLUSIONS/SIGNIFICANCE: The results provide insight into the mechanisms by which amyloid aggregates may cause pathological effects in prion and amyloid diseases
    • …
    corecore