249 research outputs found

    Molecular Epidemiology of HIV-1 Subtypes in India: Origin and Evolutionary History of the Predominant Subtype C

    Get PDF
    This thesis describes the translational genomics of HIV-1subtype C in India from its origin to therapeutic response with the aim to improve our knowledge for better therapeutic and preventive strategies to combat HIV/AIDS. In a systemic approach, we identified the molecular phylogeny of HIV-1 subtypes circulating in India and the time to most recent common ancestors (tMRCA) of predominant HIV-1 subtype C strains. Additionally, this thesis also studied drug resistance mutations in children, adolescents and adults, the role of host factors in evolution of drug resistance, and population dynamics of viremia and viral co-receptor tropism in perinatal transmission. Finally, the long term therapeutic responses on Indian national first-line antiretroviral therapy were also studied. In Paper I, we reported an increase in the HIV-1 recombinant forms in the HIV-1 epidemiology using a robust subtyping methodology. While the study confirmed HIV- 1 subtype C as a dominant subtype, its origin was dated back to the early 1970s from a single or few genetically related strains from South Africa, whereafter, it has evolved independently. In Paper II, the lethal hypermutations due to the activity of human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (hA3G) was significantly associated with antiretroviral therapy (ART) failure in Indian HIV-1 subtype C patients. The presence of M184I and M230I mutations were observed due to the editing of hA3G in the proviral compartment but stop codons were also found in the open reading frames and the same drug resistance mutations were absent in plasma virus. Therefore, it is unlikely that the viral variants which exhibit hypermutated sequences and M184I and/or M230I will mature and expand in vivo and hence are unlikely to have any clinical significance. The high concordance of drug resistance genotyping in the plasma and proviral compartments in therapy-naïve patients, gives weight to the idea of using whole blood for surveillance of drug resistance mutations which precludes logistic challenges of cold chain transport. In Papers III and IV, we identified a substantial proportion of HIV-1 subtype C perinatally-infected older children who had a high burden of plasma viremia but also had high CD4+ T-cell counts. In addition, older children with HIV-1 subtype C infection presented a high prevalence of predicted X4 and R5/X4 tropic strains which indicates that HIV-1 subtype C strains required longer duration of infection and greater disease progression to co-receptor transition from R5- to X4-tropic strains (IV). Our studies also indicate that transmitted drug resistance is low among Indian HIV-1 infected children, adolescents (III) and adults (II). In Paper V, in a longitudinal cohort study, a good long-term response to the Indian national first-line therapy for a median of nearly four years with 2.8% viral failure, indicating the overall success of the Indian ART program. Our study also showed that three immunologically well patients with virological rebound and major viral drug resistance mutations (M184V, K103N and Y181C) during one study visit had undetectable viral load at their next visit. These findings suggest that use of multiple parameters like patients’ immunological (CD4+ T-cell count), virological (viral load) and drug resistance data should all be used to optimize the treatment switch to second line therapy. In conclusion, this translational genomics study enhances our knowledge about the HIV-1 subtype C strains circulating in India which are genetically distinct from prototype African subtype C strains. Considerably more research using appropriate models need to be performed to understand the phenotypic and biological characteristics of these strains to guide efficient disease intervention and management strategies

    Anaesthesia and PET of the Brain

    Get PDF
    Although drugs have been used to administer general anaesthesia for more than a century and a half, relatively little was known until recently about the molecular and cellular effects of the anaesthetic agents and the neurobiology of anaesthesia. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have played a valuable role in improving this knowledge. PET studies using 11C-flumazenil binding have been used to demonstrate that the molecular action of some, but not all, of the current anaesthetic agents is mediated via the GABAA receptor. Using different tracers labelled with 18F, 11C and 15O, PET studies have shown the patterns of changes in cerebral metabolism and blood flow associated with different intravenous and volatile anaesthetic agents. Within classes of volatile agents, there are minor variations in patterns. More profound differences are found between classes of agents. Interestingly, all agents cause alterations in the blood flow and metabolism of the thalamus, providing strong support for the hypothesis that the anaesthetic agents interfere with consciousness by interfering with thalamocortical communication.</p

    MET and AKT Genetic Influence on Facial Emotion Perception

    Get PDF
    Background: Facial emotion perception is a major social skill, but its molecular signal pathway remains unclear. The MET/ AKT cascade affects neurodevelopment in general populations and face recognition in patients with autism. This study explores the possible role of MET/AKT cascade in facial emotion perception. Methods: One hundred and eighty two unrelated healthy volunteers (82 men and 100 women) were recruited. Four single nucleotide polymorphisms (SNP) of MET (rs2237717, rs41735, rs42336, and rs1858830) and AKT rs1130233 were genotyped and tested for their effects on facial emotion perception. Facial emotion perception was assessed by the face task of Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Thorough neurocognitive functions were also assessed. Results: Regarding MET rs2237717, individuals with the CT genotype performed better in facial emotion perception than those with TT (p = 0.016 by ANOVA, 0.018 by general linear regression model [GLM] to control for age, gender, and education duration), and showed no difference with those with CC. Carriers with the most common MET CGA haplotype (frequency = 50.5%) performed better than non-carriers of CGA in facial emotion perception (p = 0.018, df = 1, F = 5.69, p = 0.009 by GLM). In MET rs2237717/AKT rs1130233 interaction, the C carrier/G carrier group showed better facial emotion perception than those with the TT/AA genotype (p = 0.035 by ANOVA, 0.015 by GLM), even when neurocognitive functions were controlled (p = 0.046 by GLM)

    Accelerated discovery of two crystal structure types in a complex inorganic phase field

    Get PDF
    The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition1. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios2,3. Computational methods have been developed to guide synthesis by predicting structures at specific compositions4,5,6 and predicting compositions for known crystal structures7,8, with notable successes9,10. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge8,11. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them

    Evaluation of metals that are potentially toxic to agricultural surface soils, using statistical analysis, in northwestern Saudi Arabia

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Heavy metals in agricultural soils enter the food chain when taken up by plants. The main purpose of this work is to determine metal contamination in agricultural farms in northwestern Saudi Arabia. Fifty surface soil samples were collected from agricultural areas. The study focuses on the geochemical behavior of As, Cd, Co, Cr, Cu, Hg, Pb and Zn, and determines the enrichment factor and geoaccumulation index. Multivariate statistical analysis, including principle component analysis and cluster analysis, is also applied to the acquired data. The study shows considerable variation in the concentrations of the analyzed metals in the studied soil samples. This variation in concentration is attributed to the intensity of agricultural activities and, possibly, to nearby fossil fuel combustion activities, as well as to traffic flows from highways and local roads. Multivariate analysis suggests that As, Cd, Hg and Pb are associated with anthropogenic activities, whereas Co, Cr, Cu and Zn are mainly controlled by geogenic activities. Hg and Pb show the maximum concentration in the analyzed samples as compared to the background concentration

    Worldwide molecular epidemiology of HIV

    Full text link

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    • 

    corecore