21 research outputs found

    Assessment of trace metal contamination in a historical freshwater canal (Buckingham Canal), Chennai, India

    Get PDF
    The present study was done to assess the sources and the major processes controlling the trace metal distribution in sediments of Buckingham Canal. Based on the observed geochemical variations, the sediments are grouped as South Buckingham Canal and North Buckingham Canal sediments (SBC and NBC, respectively). SBC sediments show enrichment in Fe, Ti, Mn, Cr, V, Mo, and As concentrations, while NBC sediments show enrichment in Sn, Cu, Pb, Zn, Ni, and Hg. The calculated Chemical Index of Alteration and Chemical Index of Weathering values for all the sediments are relatively higher than the North American Shale Composite and Upper Continental Crust but similar to Post-Archaean Average Shale, and suggest a source area with moderate weathering. Overall, SBC sediments are highly enriched in Mo, Zn, Cu, and Hg (geoaccumulation index (Igeo) class 4– 6), whereas NBC sediments are enriched in Sn, Cu,Zn, and Hg (Igeo class 4–6). Cu, Ni, and Cr show higher than Effects-Range Median values and hence the biological adverse effect of these metals is 20%; Zn, which accounts for 50%, in the NBC sediments, has a more biological adverse effect than other metalsfound in these sediments. The calculated Igeo, Enrichment Factor, and Contamination Factor values indicate that Mo, Hg, Sn, Cu, and Zn are highly enriched in the Buckingham Canal sediments, suggesting the rapid urban and industrial development of Chennai MetropolitanCity have negatively influenced on the surrounding aquatic ecosystem

    The geochemistry of primary and weathered oil shale and coquina across the Julia Creek vanadium deposit (Queensland, Australia)

    No full text
    A significant resource of vanadium and molybdenum exists near Julia Creek, Australia, where the middle Cretaceous organic-rich Toolebuc Formation lies between 0 and 25 m of the surface. We present and discuss a comprehensive geochemical study of the Toolebuc Formation and its enclosing stratigraphy near Julia Creek to understand this ore deposit. V and Mo contents in fresh facies are strongly\ud associated with total organic carbon (TOC) contents, but not\ud with Al or CaCO3; this suggests that V and Mo were originally concentrated in the organic fraction. However,\ud chemical extractions using H2O2 indicate that Mo was\ud originally concentrated in pyrite. The data also suggest that V was mobilised from organic matter during early diagenesis and became associated with clays as little V was extracted by H2O2 in the fresh samples. TOC contents in the Toolebuc Formation were removed during weathering, residually enriching trace metals including V and Mo, and as a result, the TOC relationship with V and Mo disintegrates. With weathering, both V and Mo predominantly became associated with iron oxide/hydroxide phases (and possibly other unidentified phases) as these elements in the weathered facies were highly soluble in the sodium citrate–sodium dithionite digestion. Large shale-hosted V and Mo deposits such as Julia Creek offer a potentially viable alternative to the currently mined magnetite-hosted deposits. A thorough understanding of the formation and host\ud mineral phases for V and Mo of these shale deposits,\ud however, is critical to ensure that these valuable metals\ud can be feasibly extracted
    corecore