10,823 research outputs found

    Transport coefficients of a mesoscopic fluid dynamics model

    Full text link
    We investigate the properties of stochastic rotation dynamics (Malevanets-Kapral method), a mesoscopic model used for simulating fluctuating hydrodynamics. Analytical results are given for the transport coefficients. We discuss the most efficient way of measuring the transport properties and obtain excellent agreement between the theoretical and numerical calculations.Comment: 12 pages, 9 figures, submitted to J. Chem. Phy

    On Phase Transition of NH4H2PO4NH_{4}H_{2}PO_{4}-Type Crystals by Cluster Variation Method

    Full text link
    The Cluster Variation Method (CVM) is applied to the Ishibashi model for ammonium dihydrogen phosphate (NH4H2PO4\rm NH_{4}H_{2}PO_{4}) of a typical hydrogen bonded anti-ferroelectric crystal. The staggered and the uniform susceptibility without hysteresis are calculated at equilibrium. On the other hand, by making use of the natural iteration method (NIM) for the CVM, hysteresis phenomena of uniform susceptibility versus temperature observed in experiments is well explained on the basis of local minimum in Landau type variational free energy. The polarization PP curves against the uniform field is also calculated.Comment: 14 pages, 10 figure

    Universal properties of highly frustrated quantum magnets in strong magnetic fields

    Get PDF
    The purpose of the present paper is two-fold. On the one hand, we review some recent studies on the low-temperature strong-field thermodynamic properties of frustrated quantum spin antiferromagnets which admit the so-called localized-magnon eigenstates. One the other hand, we provide some complementary new results. We focus on the linear independence of the localized-magnon states, the estimation of their degeneracy with the help of auxiliary classical lattice-gas models and the analysis of the contribution of these states to thermodynamics.Comment: Paper based on the invited talk given by J. Richter at the International Conference "Statistical Physics 2006. Condensed Matter: Theory and Applications" dedicated to the 90th anniversary of Ilya Lifshitz (Kharkiv, 11-15 September, 2006

    Cluster variation - Pade` approximants method for the simple cubic Ising model

    Full text link
    The cluster variation - Pade` approximant method is a recently proposed tool, based on the extrapolation of low/high temperature results obtained with the cluster variation method, for the determination of critical parameters in Ising-like models. Here the method is applied to the three-dimensional simple cubic Ising model, and new results, obtained with an 18-site basic cluster, are reported. Other techniques for extracting non-classical critical exponents are also applied and their results compared with those by the cluster variation - Pade` approximant method.Comment: 8 RevTeX pages, 3 PostScript figure

    Dynamical Susceptibility in KDP-type Crysals above and below Tc II

    Full text link
    The path probability method (PPM) in the tetrahedron-cactus approximation is applied to the Slater-Takagi model with dipole-dipole interaction for KH2PO4-type hydrogen-bonded ferroelectric crystals in order to derive a small dip structure in the real part of dynamical susceptibility observed at the transition temperature Tc. The dip structure can be ascribed to finite relaxation times of electric dipole moments responsible for the first order transition with contrast to the critical slowing down in the second order transition. The light scattering intensity which is related to the imaginary part of dynamical susceptibility is also calculated above and below the transition temperature and the obtained central peak structure is consistent with polarization fluctuation modes in Raman scattering experiments.Comment: 8 pages, 11 figure

    NMR characterization of spin-1/2 alternating antiferromagnetic chains in the high-pressure phase of (VO)2P2O7

    Full text link
    Local-susceptibility measurements via the NMR shifts of 31^{31}P and 51^{51}V nuclei in the high-pressure phase of (VO)2_{2}P2_{2}O7_{7} confirmed the existence of a unique alternating antiferromagnetic chain with a zero-field spin gap of 34 K. The 31^{31}P nuclear spin-lattice relaxation rate scales with the uniform spin susceptibility below about 15 K which shows that the temperature dependence of both the static and dynamical spin susceptibilities becomes identical at temperatures not far below the spin-gap energy.Comment: 6 pages, 5 figures; To be published in J. Phys. Condens. Matte

    Commuting difference operators arising from the elliptic C_2^{(1)}-face model

    Get PDF
    We study a pair of commuting difference operators arising from the elliptic C_2^{(1)}-face model. The operators, whose coefficients are expressed in terms of the Jacobi's elliptic theta function, act on the space of meromorphic functions on the weight space of the C_2 type simple Lie algebra. We show that the space of functions spanned by the level one characters of the affine Lie algebra sp(4,C) is invariant under the action of the difference operators.Comment: latex2e file, 19 pages, no figures; added reference

    Hawking radiation of unparticles

    Full text link
    Unparticle degrees of freedom, no matter how weakly coupled to the standard model particles, must affect the evolution of a black hole, which thermally decays into all available degrees of freedom. We develop a method for calculating the grey-body factors for scalar unparticles for 3+1 and higher dimensional black holes. We find that the power emitted in unparticles may be quite different from the power emitted in ordinary particles. Depending on the parameters in the model, unparticles may become the dominant channel. This is of special interest for small primordial black holes and also in models with low scale quantum gravity where the experimental signature may significantly be affected. We also discuss the sensitivity of the results on the (currently unknown) unparticle normalization.Comment: Calculations for different normalization of unparticles included, discussion expanded, version published in Phys. Rev.

    Cryogenic Calibration Setup for Broadband Complex Impedance Measurements

    Full text link
    Reflection measurements give access to the complex impedance of a material on a wide frequency range. This is of interest to study the dynamical properties of various materials, for instance disordered superconductors. However reflection measurements made at cryogenic temperature suffer from the difficulty to reliably subtract the circuit contribution. Here we report on the design and first tests of a setup able to precisely calibrate in situ the sample reflection, at 4.2 K and up to 2 GHz, by switching and measuring, during the same cool down, the sample and three calibration standards.Comment: (6 pages, 6 figures

    Absence of Edge Localized Moments in the Doped Spin-Peierls System CuGe1x_{1-x}Six_{x}O3_3

    Full text link
    We report the observation of nuclear quadrupole resonance (NQR) of Cu from the sites near the doping center in the spin-Peierls system CuGe1x_{1-x}Six_{x}O3_3. The signal appears as the satellites in the Cu NQR spectrum, and has a suppressed nuclear spin-lattice relaxation rate indicative of a singlet correlation rather than an enhanced magnetic correlation near the doping center. Signal loss of Cu nuclei with no neighboring Si is also observed. We conclude from these observations that the doping-induced moments are not in the vicinity of the doping center but rather away from it.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
    corecore