138 research outputs found
How much Northern Hemisphere precipitation is associated with extratropical cyclones?
This is the final version of the article. Available from the publisher via the DOI in this record.Extratropical cyclones are often associated with heavy precipitation events and can have major socio-economic impacts. This study investigates how much of the total precipitation in the Northern Hemisphere is associated with extratropical cyclones. An objective feature tracking algorithm is used to locate cyclones and the precipitation associated with these cyclones is quantified to establish their contribution to total precipitation. Climatologies are produced from the Global Precipitation Climatology Project (GPCP) daily dataset and the ERA-Interim reanalysis. The magnitude and spatial distribution of cyclone associated precipitation and their percentage contribution to total precipitation is closely comparable in both datasets. In some regions, the contribution of extratropical cyclones exceeds 90/85% of the total DJF/JJA precipitation climatology. The relative contribution of the most intensely precipitating storms to total precipitation is greater in DJF than JJA. The most intensely precipitating 10% of storms contribute over 20% of total storm associated precipitation in DJF, whereas they provide less than 15% of this total in JJA. © 2012. American Geophysical Union. All Rights Reserved.MKH is supported by the Natural Environment Research Council’s project ‘Testing and Evaluating Model Predictions of European Storms’ (TEMPEST). The precipitation composites included in the auxiliary material were produced using scripts based on the work of Jennifer L. Catto and we thank her for their use. The authors would like to thank the reviewers for their helpful comments
Recommended from our members
A new perspective of the climatological features of upper-level cut-off lows in the Southern Hemisphere
This study presents a detailed view of the seasonal variability of upper-level cut-off lows (COLs) in the Southern Hemisphere. The COLs are identified and tracked using data from a 36-year period of the European Centre for Medium Range Weather Forecast reanalysis (ERA-Interim). The objective identification of the COLs uses a new approach, which is based on 300 hPa relative vorticity minima, and three restrictive criteria of the presence of a cold-core, stratospheric potential vorticity intrusion, and cut-off cyclonic circulation. The highest COL activity is in agreement with previous studies, located near three main continental areas (Australia, South America, and Africa), with maximum frequencies usually observed in the austral autumn. The COL mean intensity values show a marked seasonal and spatial variation, with maximum (minimum) values during the austral winter (summer), a unique feature that has not been observed previously in studies based on the geopotential. The link between intensity and lysis is examined, and finds that weaker systems are more susceptible to lysis in the vicinity of the Andes Cordillera, associated with the topographic Rossby wave. Lysis and genesis regions are close to each other, confirming that COLs are quasi-stationary systems. Also, COLs tend to move eastward and are faster over the higher latitudes. The mean growth/decay rates coincide with the major genesis and lysis density regions, such as the significant decay values across the Andes all year. As a consequence of using vorticity for the tracking method a longer lifetime of COLs is detected than in other studies, but this does not affect the total frequency of occurrence. Comparisons with other studies suggest that the differences in seasonality are due to uncertainties in the reanalyses and the methods used to identify COLs
Recommended from our members
The contribution of tropical cyclones to the atmospheric branch of Middle America's hydrological cycle using observed and reanalysis tracks
Middle America is affected by tropical cyclones (TCs) from the Eastern Pacific and the North Atlantic Oceans. We characterize the regional climatology (1998-2016) of the TC contributions to the atmospheric branch of the hydrological cycle, from May to December. TC contributions to rainfall are quantified using Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product 3B42 and TC tracks derived from three sources: the International Best Track Archive for Climate Stewardship (IBTrACS), and an objective feature tracking method applied to the Japanese 55-year and ERA-Interim reanalyses. From July to October, TCs contribute 10-30% of rainfall over the west and east coast of Mexico and central Mexico, with the largest monthly contribution during September over the Baja California Peninsula (up to 90%). TCs are associated with 40-60% of daily extreme rainfall (above the 95th percentile) over the coasts of Mexico. IBTrACS and reanalyses agree on TC contributions over the Atlantic Ocean but disagree over the Eastern Pacific Ocean and continent; differences over the continent are mainly attributed to discrepancies in TC tracks in proximity to the coast and TC lifetime. Reanalysis estimates of TC moisture transports show that TCs are an important moisture source for the regional water budget. TC vertically integrated moisture flux (VIMF) convergence can turn regions of weak VIMF divergence by the mean circulation into regions of weak VIMF convergence. We discuss deficiencies in the observed and reanalysis TC tracks, which limit our ability to quantify robustly the contribution of TCs to the regional hydrological cycle
Structural correlates of semantic and phonemic fluency ability in first and second languages
Category and letter fluency tasks are commonly used clinically to investigate the semantic and phonological processes central to speech production, but the neural correlates of these processes are difficult to establish with functional neuroimaging because of the relatively unconstrained nature of the tasks. This study investigated whether differential performance on semantic (category) and phonemic (letter) fluency in neurologically normal participants was reflected in regional gray matter density. The participants were 59 highly proficient speakers of 2 languages. Our findings corroborate the importance of the left inferior temporal cortex in semantic relative to phonemic fluency and show this effect to be the same in a first language (L1) and second language (L2). Additionally, we show that the pre-supplementary motor area (pre-SMA) and head of caudate bilaterally are associated with phonemic more than semantic fluency, and this effect is stronger for L2 than L1 in the caudate nuclei. To further validate these structural results, we reanalyzed previously reported functional data and found that pre-SMA and left caudate activation was higher for phonemic than semantic fluency. On the basis of our findings, we also predict that lesions to the pre-SMA and caudate nuclei may have a greater impact on phonemic than semantic fluency, particularly in L2 speakers
Borneo Vortices in a warmer climate
This is the final version. Available from Nature Research via the DOI in this record. DATA AVAILABILITY:
The CMIP6 HighResMIP data are downloaded from the data node website of the
Lawrence Livermore National Laboratory (https://esgf-node.llnl.gov/projects/cmip6/).
The ERA5 climate reanalysis datasets can be downloaded from the website
of the Copernicus Programme (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-pressure-levels?tab=overview). The TRACK outputs for the identified
BV features based on the datasets above are available upon request from the
corresponding author Ju Liang: [email protected] Vortices (BVs) are weather systems that are responsible for devastating hydro-climatic extremes and significant losses of life and property in Southeast Asia. The typical resolution of most current climate models is insufficient to resolve these high-impact, synoptic-scale weather systems. Here, an ensemble of high-resolution models projects that future BVs may become less frequent and more stationary, driven by the weakening of the Northeast monsoon flow and associated cold surges across North Borneo. However, substantial increases in both the intensity and the total amount of precipitation from BVs are projected. Such changes are driven by the more humid and convectively unstable lower troposphere. As a result, the contribution of BVs to the accumulation of both total precipitation and extreme precipitation is projected to increase considerably in the vicinity of the southern South China Sea, making individual BVs more threatening to the adjacent coastal regions.Natural Environment Research CouncilMinistry of Higher Education MalaysiaMinistry of Higher Education Malaysi
Recommended from our members
Seasonal forecasts of North Atlantic tropical cyclone activity in the North American Multi-Model Ensemble
The North American Multi-Model Ensemble (NMME)-Phase II models are evaluated in terms of their retrospective seasonal forecast skill of the North Atlantic (NA) tropical cyclone (TC) activity, with a focus on TC frequency. The TC identification and tracking algorithm is modified to accommodate model data at daily resolution. It is also applied to three reanalysis products at the spatial and temporal resolution of the NMME-Phase II ensemble to allow for a more objective estimation of forecast skill. When used with the reanalysis data, the TC tracking generates realistic climatological distributions of the NA TC formation and tracks, and represents the interannual variability of the NA TC frequency quite well. Forecasts with the multi-model ensemble (MME) when initialized in April and later tend to have skill in predicting the NA seasonal TC counts (and TC days). At longer leads, the skill is low or marginal, although one of the models produces skillful forecasts when initialized as early as January and February. At short lead times, while demonstrating the highest skill levels the MME also tends to significantly outperform the individual models and attain skill comparable to the reanalysis. In addition, the short-lead MME forecasts are quite reliable. At regional scales, the skill is rather limited and mostly present in the western tropical NA and the Caribbean Sea. It is found that the overall MME forecast skill is limited by poor representation of the low-frequency variability in the predicted TC frequency, and large fluctuations in skill on decadal time scales. Addressing these deficiencies is thought to increase the value of the NMME ensemble in providing operational guidance
Recommended from our members
Changes in northern hemisphere temperature variability shaped by regional warming patterns
Global warming involves changes not only in the mean atmospheric temperature, but also in its variability and extremes. Here we use a feature-tracking technique to investigate the dynamical contribution to temperature anomalies in the northern hemisphere in CMIP5 climate-change simulations. We develop a simple theory to explain how temperature variance and skewness changes are generated dynamically from mean temperature gradient changes, and demonstrate the crucial role of regional warming patterns in shaping the distinct response of cold and warm anomalies. We also show that skewness changes must be taken into account, in addition to variance changes, in order to correctly capture the projected temperature variability response. These changes in variability may impact humans, agriculture and animals, as they experience not only a warmer mean climate, but also a new likelihood of temperature anomalies within that climate
Recommended from our members
Selecting CMIP5 GCMs for downscaling over multiple regions
The unprecedented availability of 6-hourly data from a multi-model GCM ensemble in the CMIP5 data archive presents the new opportunity to dynamically downscale multiple GCMs to develop high-resolution climate projections relevant to detailed assessment of climate vulnerability and climate change impacts. This enables the development of high resolution projections derived from the same set of models that are used to characterise the range of future climate changes at the global and large-scale, and as assessed in the IPCC AR5. However, the technical and human resource required to dynamically-downscale the full CMIP5 ensemble are significant and not necessary if the aim is to develop scenarios covering a representative range of future climate conditions relevant to a climate change risk assessment. This paper illustrates a methodology for selecting from the available CMIP5 models in order to identify a set of 8–10 GCMs for use in regional climate change assessments. The selection focuses on their suitability across multiple regions—Southeast Asia, Europe and Africa. The selection (a) avoids the inclusion of the least realistic models for each region and (b) simultaneously captures the maximum possible range of changes in surface temperature and precipitation for three continental-scale regions. We find that, of the CMIP5 GCMs with 6-hourly fields available, three simulate the key regional aspects of climate sufficiently poorly that we consider the projections from those models ‘implausible’ (MIROC-ESM, MIROC-ESM-CHEM, and IPSL-CM5B-LR). From the remaining models, we demonstrate a selection methodology which avoids the poorest models by including them in the set only if their exclusion would significantly reduce the range of projections sampled. The result of this process is a set of models suitable for using to generate downscaled climate change information for a consistent multi-regional assessment of climate change impacts and adaptation
Recommended from our members
Multiparticle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au + Au collisions at sNN =200 GeV
We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity 1<|η|<3 in Au + Au collisions at sNN=200 GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients v2{2},v2{4},v2{6}, and v2{8}, and triangular flow coefficients v3{2} and v3{4}. Using the small-variance limit, we estimate the mean and variance of the event-by-event v2 distribution from v2{2} and v2{4}. In a complementary analysis, we also use a folding procedure to study the distributions of v2 and v3 directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final-state momentum distributions are discussed
- …