8 research outputs found

    Can improved nutrition for Atlantic salmon in freshwater increase fish robustness, survival and growth after seawater transfer?

    Get PDF
    The loss of fish in the seawater (SW) phase of Atlantic salmon farming is high, and a major proportion of this loss occurs in the period just after SW transfer. In the current study, we hypothesize that improvements made to the diet during the freshwater (FW) stage affect fish growth, survival and robustness later in the SW stage. To test this, salmon parr were fed five experimental diets in FW at 12 °C. In addition to a commercial-like control diet, fish were fed a diet with changed FA composition aimed to be more like the natural feed of salmon in FW, a diet with increased concentrations of selected AA/N-compounds (methionine, lysine, threonine and taurine), a diet with increased concentrations of methionine and certain B-vitamins (folate, B12 and B6) and a final diet combining all of these potential improvements. At the time of SW transfer, the robustness of fish fed the different diets was tested by direct transfer to SW at three different temperatures (8, 12 and 16 °C, without prior acclimation), as well as transfer into open net pens, while fed on a common commercial diet. Growth and proximate composition of the fish did not differ between the diet groups. All diet groups seemed to handle transfer to SW well, and while SW transfer elicited a stress response in the fish, this was not significantly different between diet groups. Fish transferred to SW at 8 °C had higher mortality, reduced mucus layer and increased prevalence of scale loss and wounds, but this applied to all diet groups. Hence, direct transfer to SW at a lower temperature than the fish has been acclimated to cannot be recommended. At the two highest temperatures, there were some differences between the groups in the severity of cataracts. Apart from this, none of the health- or welfare related parameters measured showed any difference between the diet groups, indicating that the control diet was already sufficient

    DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation

    Get PDF
    DNA methylation, a well-studied epigenetic mark, is important for gene regulation in adulthood and for development. Using genetic and epigenetic approaches, the present study aimed at evaluating the effects of heat stress and copper exposure during zebrafish early embryogenesis when patterns of DNA methylation are being established, a process called reprogramming. Embryos were exposed to 325 μg Cu/L from fertilization (&lt;1 h post fertilization-hpf) to 4 hpf at either 26.5 °C or 34 °C, followed by incubation in clean water at 26.5 °C till 96 hpf. Significant increased mortality rates and delayed hatching were observed following exposure to combined high temperature and Cu. Secondly, both stressors, alone or in combination, significantly upregulated the expression of de novo DNA methyltransferase genes (dnmt3) along with no differences in global cytosine methylation level. Finally, Cu exposure significantly increased the expression of metallothionein (mt2) and heat shock protein (hsp70), the latter being also increased following exposure to high temperature. These results highlighted the sensitivity of early embryogenesis and more precisely of the reprogramming period to environmental challenges, in a realistic situation of combined stressors.</p
    corecore