1,688 research outputs found
Recommended from our members
Fewer rainy days and more extreme rainfall by the end of the century in Southern Africa
Future changes in the structure of daily rainfall, especially the number of rainy days and the intensity of extreme events, are likely to induce major impacts on rain-fed agriculture in the tropics. In Africa this issue is of primary importance, but the agreement between climate models to simulate such descriptors of rainfall is generally poor. Here, we show that the climate models used for the fifth assessment report of IPCC simulate a marked decrease in the number of rainy days, together with a strong increase in the rainfall amounts during the 1% wettest days, by the end of the 21st century over Southern Africa. These combined changes lead to an apparent stability of seasonal totals, but are likely to alter the quality of the rainy season. These evolutions are due to the superposition of slowly-changing moisture fluxes, mainly supported by increased hygrometric capacity associated with global warming, and unchanged short-term atmospheric configurations in which extreme events are embedded. This could cause enhanced floods or droughts, stronger soil erosion and nutriment loss, questioning the sustainability of food security for the 300 million people currently living in Africa south of the Equator
Modeling the dynamics of glacial cycles
This article is concerned with the dynamics of glacial cycles observed in the geological record of the Pleistocene Epoch. It focuses on a conceptual model proposed by Maasch and Saltzman [J. Geophys. Res.,95, D2 (1990), pp. 1955-1963], which is based on physical arguments and emphasizes the role of atmospheric CO2 in the generation and persistence of periodic orbits (limit cycles). The model consists of three ordinary differential equations with four parameters for the anomalies of the total global ice mass, the atmospheric CO2 concentration, and the volume of the North Atlantic Deep Water (NADW). In this article, it is shown that a simplified two-dimensional symmetric version displays many of the essential features of the full model, including equilibrium states, limit cycles, their basic bifurcations, and a Bogdanov-Takens point that serves as an organizing center for the local and global dynamics. Also, symmetry breaking splits the Bogdanov-Takens point into two, with different local dynamics in their neighborhoods
The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models
We study the ability of 24 ocean atmosphere global coupled models from the Coupled Model Intercomparison Project 5 (CMIP5) to reproduce the teleconnections between El Niño Southern Oscillation (ENSO) and Southern African rainfall in austral summer using historical forced simulations, with a focus on the atmospheric dynamic associated with El Niño. Overestimations of summer rainfall occur over Southern Africa in all CMIP5 models. Abnormal westward extensions of ENSO patterns are a common feature of all CMIP5 models, while the warming of the Indian Ocean that happens during El Niño is not correctly reproduced. This could impact the teleconnection between ENSO and Southern African rainfall which is represented with mixed success in CMIP5 models. Large-scale anomalies of suppressed deep-convection over the tropical maritime continent and enhanced convection from the central to eastern Pacific are correctly simulated. However, regional biases occur above Africa and the Indian Ocean, particularly in the position of the deep convection anomalies associated with El Niño, which can lead to the wrong sign in rainfall anomalies in the northwest part of South Africa. From the near-surface to mid-troposphere, CMIP5 models underestimate the observed anomalous pattern of pressure occurring over Southern Africa that leads to dry conditions during El Niño years
Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal VO2 beams
Spatial phase inhomogeneity at the nano- to microscale is widely observed in
strongly-correlated electron materials. The underlying mechanism and
possibility of artificially controlling the phase inhomogeneity are still open
questions of critical importance for both the phase transition physics and
device applications. Lattice strain has been shown to cause the coexistence of
metallic and insulating phases in the Mott insulator VO2. By continuously
tuning strain over a wide range in single-crystal VO2 micro- and nanobeams,
here we demonstrate the nucleation and manipulation of one-dimensionally
ordered metal-insulator domain arrays along the beams. Mott transition is
achieved in these beams at room temperature by active control of strain. The
ability to engineer phase inhomogeneity with strain lends insight into
correlated electron materials in general, and opens opportunities for designing
and controlling the phase inhomogeneity of correlated electron materials for
micro- and nanoscale device applications.Comment: 14 pages, 4 figures, with supplementary informatio
The MACHO Project Large Magellanic Cloud Variable Star Inventory. VIII. The Recent Star Formation History of the LMC from the Cepheid Period Distribution
We present an analysis of the period distribution of Cepheids in the Large Magellanic Cloud, based on data obtained by the MACHO microlensing experiment and on a previous catalogue by Payne-Gaposchkin. Using stellar evolution and pulsation models, we construct theoretical period-frequency distributions that are compared to the observations. These models reveal that a significant burst of star formation has occurred recently in the LMC ( years). We also show that during the last years, the main center of star formation has been propagating from SE to NW along the bar. We find that the evolutionary masses of Cepheids are still smaller than pulsation masses by % and that the red edge of the Cepheid instability strip could be slightly bluer than indicated by theory. There are Cepheids with periods below days cannot be explained by evolution theory. We suggest that they are anomalous Cepheids; a number of these stars are double-mode Cepheids
Polar vortex formation in giant-planet atmospheres due to moist convection
A strong cyclonic vortex has been observed on each of Saturn’s poles, coincident with a local maximum in observed tropospheric temperature. Neptune also exhibits a relatively warm, although much more transient, region on its south pole. Whether similar features exist on Jupiter will be resolved by the 2016 Juno mission. Energetic, small-scale storm-like features that originate from the water-cloud level or lower have been observed on each of the giant planets and attributed to moist convection, suggesting that these storms play a significant role in global heat transfer from the hot interior to space. Nevertheless, the creation and maintenance of Saturn’s polar vortices, and their presence or absence on the other giant planets, are not understood. Here we use simulations with a shallow-water model to show that storm generation, driven by moist convection, can create a strong polar cyclone throughout the depth of a planet’s troposphere. We find that the type of shallow polar flow that occurs on a giant planet can be described by the size ratio of small eddies to the planetary radius and the energy density of its atmosphere due to latent heating from moist convection. We suggest that the observed difference in these parameters between Saturn and Jupiter may preclude a Jovian polar cyclone.National Science Foundation (U.S.). Graduate Research FellowshipNational Science Foundation (U.S.) (ATM-0850639)National Science Foundation (U.S.) (AGS-1032244)National Science Foundation (U.S.) (AGS-1136480)United States. Office of Naval Research (N00014-14-1-0062
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Ethnic and gender specific life expectancies of the Singapore population, 1965 to 2009 - Converging, or diverging?
10.1186/1471-2458-13-1012BMC Public Health131
Early warning signals of simulated Amazon rainforest dieback
Copyright © The Author(s) 2013. This article is published with open access at Springerlink.comWe test proposed generic tipping point early warning signals in a complex climate model (HadCM3) which simulates future dieback of the Amazon rainforest. The equation governing tree cover in the model suggests that zero and non-zero stable states of tree cover co-exist, and a transcritical bifurcation is approached as productivity declines. Forest dieback is a non-linear change in the non-zero tree cover state, as productivity declines, which should exhibit critical slowing down. We use an ensemble of versions of HadCM3 to test for the corresponding early warning signals. However, on approaching simulated Amazon dieback, expected early warning signals of critical slowing down are not seen in tree cover, vegetation carbon or net primary productivity. The lack of a convincing trend in autocorrelation appears to be a result of the system being forced rapidly and non-linearly. There is a robust rise in variance with time, but this can be explained by increases in inter-annual temperature and precipitation variability that force the forest. This failure of generic early warning indicators led us to seek more system-specific, observable indicators of changing forest stability in the model. The sensitivity of net ecosystem productivity to temperature anomalies (a negative correlation) generally increases as dieback approaches, which is attributable to a non-linear sensitivity of ecosystem respiration to temperature. As a result, the sensitivity of atmospheric CO2 anomalies to temperature anomalies (a positive correlation) increases as dieback approaches. This stability indicator has the benefit of being readily observable in the real world.NERCJoint DECC/Defra Met Office Hadley Centre Climate ProgrammeUniversity of
Exete
Complex networks for climate model evaluation with application to statistical versus dynamical modeling of South American climate
Acknowledgments: This paper was developed within the scope of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. Furthermore, this work has been financially supported by the Leibniz Society (project ECONS), and the Stordalen Foundation (JFD). For certain calculations, the software packages pyunicorn (Donges et al. 2013a) and igraph (Csa´rdi and Nepusz 2006) were used. The authors would like to thank Manoel F. Cardoso, Niklas Boers, and the reviewers for helpful comments on the manuscript. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Peer reviewedPostprin
- …
