32 research outputs found
Enrichment of Omnivorous Cercozoan Nanoflagellates from Coastal Baltic Sea Waters
Free-living nano-sized flagellates are important bacterivores in aquatic habitats. However, some slightly larger forms can also be omnivorous, i.e., forage upon both bacterial and eukaryotic resources. This hitherto largely ignored feeding mode may have pronounced implications for the interpretation of experiments about protistan bacterivory. We followed the response of an uncultured group of omnivorous cercozoan nanoflagellates from the Novel Clade 2 (Cerc_BAL02) to experimental food web manipulation in samples from the Gulf of Gdańsk (Southern Baltic Sea). Seawater was either prefiltered through 5 µm filters to exclude larger predators of nanoflagellates (F-treatment), or prefiltered and subsequently 1∶10 diluted with sterile seawater (F+D-treatment) to stimulate the growth of both, flagellates and bacteria. Initially, Cerc_BAL02 were rapidly enriched under both conditions. They foraged on both, eukaryotic prey and bacteria, and were highly competitive at low concentrations of food. However, these omnivores were later only successful in the F+D treatment, where they eventually represented almost one fifth of all aplastidic nanoflagellates. By contrast, their numbers stagnated in the F-treatment, possibly due to top-down control by a concomitant bloom of other, unidentified flagellates. In analogy with observations about the enrichment of opportunistically growing bacteria in comparable experimental setups we suggest that the low numbers of omnivorous Cerc_Bal02 flagellates in waters of the Gulf of Gdańsk might also be related to their vulnerability to grazing pressure
Successional changes in bacterial communities during the development of black band disease on the reef coral, Montipora hispida
Black band disease (BBD) consists of a mat-forming microbial consortium that migrates across coral colonies causing rapid tissue loss. Although BBD-associated microbial communities have been well characterized, little is known regarding how these complex bacterial consortia develop. This study analyzed successional changes in microbial communities leading to the development of BBD. Long-term monitoring of tagged corals throughout outbreaks of BBD in the central Great Barrier Reef documented cyanobacterium-infected lesions, herein termed cyanobacterial patch(es) (CP), which were macroscopically distinct from BBD and preceded the onset of BBD in 19% of the cases. Dominant cyanobacteria within CP lesions were morphologically distinct from ones dominating BBD lesions. Clone libraries and terminal restriction fragment length polymorphism analysis confirmed shifts within cyanobacterial assemblages, from Blennothrix sp.-affiliated\ud
sequences dominating CP lesions, to Oscillatoria sp.-affiliated sequences, similar to those retrieved from other BBD samples worldwide, dominating BBD lesions. Bacterial 16S ribosomal RNA clone libraries also showed shifts in bacterial ribotypes during transitions from CP to BBD, with\ud
Alphaproteobacteria-affiliated sequences dominant in CP libraries, whereas gammaproteobacterial and cyanobacterial ribotypes were more abundant in BBD clone libraries. Sequences affiliated with organisms identified in sulfur cycling were commonly retrieved from lesions showing characteristic field signs of BBD. As high sulfide concentrations have been implicated in BBD-mediated coral\ud
tissue degradation, proliferation of a microbial community actively involved in sulfur cycling potentially contributes to the higher progression rates found for BBD compared with CP lesions. Results show how microbial colonization of indistinct lesions may facilitate a common coral disease\ud
with proven ecological effects on coral populations