1,142 research outputs found

    O(alpha_s^2) corrections to fermionic Higgs decays in the MSSM

    Full text link
    We compute the two-loop corrections of O(alpha_s^2) to the Yukawa couplings in the framework of the Minimal Supersymmetric Standard Model (MSSM). The calculation is performed using the effective Lagrangian approach under the approximation of neglecting the Higgs boson mass with respect to the top quark, gluino and all squark flavour masses. As an application we derive the O(alpha_s^2) corrections to the partial decay width of the lightest Higgs boson to a bottom quark pair. We find that the two-loop corrections are sizable for large values of tan_beta and low CP-odd Higgs boson mass. With our calculation of the O(alpha_s^2) corrections the remaining theoretical uncertainties reduce below a few percent.Comment: 22 pages, 10 figure

    Detailed characterization of a long-term rodent model of critical illness and recovery

    Get PDF
    Objective: To characterize a long-term model of recovery from critical illness, with particular emphasis on cardiorespiratory, metabolic, and muscle function. Design: Randomized controlled animal study. Setting: University research laboratory. Subjects: Male Wistar rats. Interventions: Intraperitoneal injection of the fungal cell wall constituent, zymosan or n-saline. Measurements and Main Results: Following intervention, rats were followed for up to 2 weeks. Animals with zymosan peritonitis reached a clinical and biochemical nadir on day 2. Initial reductions were seen in body weight, total body protein and fat, and muscle mass. Leg muscle fiber diameter remained subnormal at 14 days with evidence of persisting myonecrosis, even though gene expression of regulators of muscle mass (e.g., MAFbx, MURF1, and myostatin) had peaked on days 2–4 but normalized by day 7. Treadmill exercise capacity, forelimb grip strength, and in vivo maximum tetanic force were also reduced. Food intake was minimal until day 4 but increased thereafter. This did not relate to appetite hormone levels with early (6 hr) rises in plasma insulin and leptin followed by persisting subnormal levels; ghrelin levels did not change. Serum interleukin-6 level peaked at 6 hours but had normalized by day 2, whereas interleukin-10 remained persistently elevated and high-density lipoprotein cholesterol persistently depressed. There was an early myocardial depression and rise in core temperature, yet reduced oxygen consumption and respiratory exchange ratio with a loss of diurnal rhythmicity that showed a gradual but incomplete recovery by day 7. Conclusions: This detailed physiological, metabolic, hormonal, functional, and histological muscle characterization of a model of critical illness and recovery reproduces many of the findings reported in human critical illness. It can be used to assess putative therapies that may attenuate loss, or enhance recovery, of muscle mass and function

    Ultraviolet asymptotics of scalar and pseudoscalar correlators in hot Yang-Mills theory

    Full text link
    Inspired by recent lattice measurements, we determine the short-distance (a > omega >> pi T) asymptotics of scalar (trace anomaly) and pseudoscalar (topological charge density) correlators at 2-loop order in hot Yang-Mills theory. The results are expressed in the form of an Operator Product Expansion. We confirm and refine the determination of a number of Wilson coefficients; however some discrepancies with recent literature are detected as well, and employing the correct values might help, on the qualitative level, to understand some of the features observed in the lattice measurements. On the other hand, the Wilson coefficients show slow convergence and it appears uncertain whether this approach can lead to quantitative comparisons with lattice data. Nevertheless, as we outline, our general results might serve as theoretical starting points for a number of perhaps phenomenologically more successful lines of investigation.Comment: 27 pages. v2: minor improvements, published versio

    On the Numerical Evaluation of Loop Integrals With Mellin-Barnes Representations

    Full text link
    An improved method is presented for the numerical evaluation of multi-loop integrals in dimensional regularization. The technique is based on Mellin-Barnes representations, which have been used earlier to develop algorithms for the extraction of ultraviolet and infrared divergencies. The coefficients of these singularities and the non-singular part can be integrated numerically. However, the numerical integration often does not converge for diagrams with massive propagators and physical branch cuts. In this work, several steps are proposed which substantially improve the behavior of the numerical integrals. The efficacy of the method is demonstrated by calculating several two-loop examples, some of which have not been known before.Comment: 13 pp. LaTe

    Supersymmetric Higgs Yukawa Couplings to Bottom Quarks at next-to-next-to-leading Order

    Full text link
    The effective bottom Yukawa couplings are analyzed for the minimal supersymmetric extension of the Standard Model at two-loop accuracy within SUSY-QCD. They include the resummation of the dominant corrections for large values of tg(beta). In particular the two-loop SUSY-QCD corrections to the leading SUSY-QCD and top-induced SUSY-electroweak contributions are addressed. The residual theoretical uncertainties range at the per-cent level.Comment: 25 pages, 9 figures, added comments and references, typos corrected, results unchanged, published versio

    Finite top quark mass effects in NNLO Higgs boson production at LHC

    Full text link
    We present next-to-next-to-leading order corrections to the inclusive production of the Higgs bosons at the CERN Large Hadron Collider (LHC) including finite top quark mass effects. Expanding our analytic results for the partonic cross section around the soft limit we find agreement with a very recent publication by Harlander and Ozeren \cite{Harlander:2009mq}.Comment: 15 page

    Phase Structure and Compactness

    Get PDF
    In order to study the influence of compactness on low-energy properties, we compare the phase structures of the compact and non-compact two-dimensional multi-frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and non-compact models coincides, but their low-energy behaviors differ. The critical frequency β2=8π\beta^2 = 8\pi at which the sine-Gordon model undergoes a topological phase transition is found to be unaffected by the compactness of the field since it is determined by high-energy scaling laws. However, the compact two-frequency sine-Gordon model has first and second order phase transitions determined by the low-energy scaling: we show that these are absent in the non-compact model.Comment: 21 pages, 5 figures, minor changes, final version, accepted for publication in JHE

    Production of scalar and pseudo-scalar Higgs bosons to next-to-next-to-leading order at hadron colliders

    Full text link
    We consider the production of intermediate-mass CP-even and CP-odd Higgs bosons in proton-proton and proton-anti-proton collisions. We extend the recently published results for the complete next-to-next-to-leading order calculation for a scalar Higgs boson to the pseudo-scalar case and present details of the calculation that might be useful for similar future investigations. The result is based on an expansion in the limit of a heavy top quark mass and a subsequent matching to the expression obtained in the limit of infinite energy. For a Higgs boson mass of 120 GeV the deviation from the infinite-top quark mass result is small. For 300 GeV, however, the next-to-next-to-leading order corrections for a scalar Higgs boson exceed the effective-theory result by about 9% which increases to 22% in the pseudo-scalar case. Thus in this mass range the effect on the total cross section amounts to about 2% and 6%, respectively, which may be relevant in future precision studies.Comment: 29 page

    Light MSSM Higgs boson mass to three-loop accuracy

    Full text link
    The light CP even Higgs boson mass, Mh, is calculated to three-loop accuracy within the Minimal Supersymmetric Standard Model (MSSM). The result is expressed in terms of DRbar parameters and implemented in the computer program H3m. The calculation is based on the proper approximations and their combination in various regions of the parameter space. The three-loop effects to Mh are typically of the order of a few hundred MeV and opposite in sign to the two-loop corrections. The remaining theory uncertainty due to higher order perturbative corrections is estimated to be less than 1 GeV.Comment: 39 pages, 13 figures. v2: minor changes, typos fixe

    Flavor Physics in an SO(10) Grand Unified Model

    Get PDF
    In supersymmetric grand-unified models, the lepton mixing matrix can possibly affect flavor-changing transitions in the quark sector. We present a detailed analysis of a model proposed by Chang, Masiero and Murayama, in which the near-maximal atmospheric neutrino mixing angle governs large new b -> s transitions. Relating the supersymmetric low-energy parameters to seven new parameters of this SO(10) GUT model, we perform a correlated study of several flavor-changing neutral current (FCNC) processes. We find the current bound on B(tau -> mu gamma) more constraining than B(B -> X_s gamma). The LEP limit on the lightest Higgs boson mass implies an important lower bound on tan beta, which in turn limits the size of the new FCNC transitions. Remarkably, the combined analysis does not rule out large effects in B_s-B_s-bar mixing and we can easily accomodate the large CP phase in the B_s-B_s-bar system which has recently been inferred from a global analysis of CDF and DO data. The model predicts a particle spectrum which is different from the popular Constrained Minimal Supersymmetric Standard Model (CMSSM). B(tau -> mu gamma) enforces heavy masses, typically above 1 TeV, for the sfermions of the degenerate first two generations. However, the ratio of the third-generation and first-generation sfermion masses is smaller than in the CMSSM and a (dominantly right-handed) stop with mass below 500 GeV is possible.Comment: 44 pages, 5 figures. Footnote and references added, minor changes, Fig. 2 corrected; journal versio
    • …
    corecore