3,094 research outputs found

    Electronic Structures of Graphene Layers on Metal Foil: Effect of Point Defects

    Full text link
    Here we report a facile method to generate a high density of point defects in graphene on metal foil and show how the point defects affect the electronic structures of graphene layers. Our scanning tunneling microscopy (STM) measurements, complemented by first principle calculations, reveal that the point defects result in both the intervalley and intravalley scattering of graphene. The Fermi velocity is reduced in the vicinity area of the defect due to the enhanced scattering. Additionally, our analysis further points out that periodic point defects can tailor the electronic properties of graphene by introducing a significant bandgap, which opens an avenue towards all-graphene electronics.Comment: 4 figure

    Study on electromagnetically induced transparency effects in Dirac and VO2_2 hybrid material structure

    Full text link
    In this paper, we present a metamaterial structure of Dirac and vanadium dioxide and investigate its optical properties using the finite-difference time-domain (FDTD) technique. Using the phase transition feature of vanadium dioxide, the design can realize active tuning of the PIT effect at terahertz frequency, thereby converting from a single PIT to a double PIT. When VO2_2 is in the insulating state, the structure is symmetric to obtain a single-band PIT effect; When VO2_2 is in the metallic state, the structure turns asymmetric to realize a dual-band PIT effect. This design provides a reference direction for the design of actively tunable metamaterials. Additionally, it is discovered that the transparent window's resonant frequency and the Dirac material's Fermi level in this structure have a somewhat linear relationship. In addition, the structure achieves superior refractive index sensitivity in the terahertz band, surpassing 1 THz/RIU. Consequently, the concept exhibits encouraging potential for application in refractive index sensors and optical switches

    Design and Testing of an Online Fertilizing Amount Detection Device Based on the Moment Balance Principle

    Get PDF
    Based on the principle of moment balance, this paper designs a fertilizer application amount online detection device, which is mainly composed of two major parts: the fertilizer guide mechanism and the fertilizer metering and discharging mechanism.Under the electromagnetic reversing and buffering of the fertilizer guide mechanism, the fertilizer discharged into the device falls alternately into the storage box of the two metering units of the metering and discharging mechanism. Once the gravity of the fertilizer in the storage box is greater than the suction of the electromagnetic sucker, the fertilizer discharging board is automatically opened for fertilizer discharge, and the metering pulse signal is accumulated once. Meanwhile, the fertilizer guide plate is driven by the electromagnetic commutator to reverse the material, and then another storage box is started for fertilizer storage and metering. In this approach, online detection of fertilizer flow can be realized by repeatedly guiding and reversing and metering the incoming fertilizer. According to the single metering fertilizer quality and the number of metering pulse signals, the fertilization amount can be calculated in real-time.The performance of the device was verified by bench test. The test results indicated that: The established fertilizer application detection model is a quadratic function (R2>0.98), and the verification error was less than 3.73% in the detection of alternating cycle fertilizer discharge; the coefficient of determination (R2) and the root mean square error (RMSE) reached 0.992 and 9.858 respectively, indicating high detection accuracy of the device is

    microRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma.

    Get PDF
    Glycolysis was reported to have a positive correlation with radioresistance. Our previous study found that the miR-33a functioned as a tumor suppressor in malignant melanoma by targeting hypoxia-inducible factor1-alpha (HIF-1α), a gene known to promote glycolysis. However, the role of miR-33a-5p in radiosensitivity remains to be elucidated. We found that miR-33a-5p was downregulated in melanoma tissues and cells. Cell proliferation was downregulated after overexpression of miR-33a-5p in WM451 cells, accompanied by a decreased level of glycolysis. In contrast, cell proliferation was upregulated after inhibition of miR-33a-5p in WM35 cells, accompanied by increased glycolysis. Overexpression of miR-33a-5p enhanced the sensitivity of melanoma cells to X-radiation by MTT assay, while downregulation of miR-33a-5p had the opposite effects. Finally, in vivo experiments with xenografts in nude mice confirmed that high expression of miR-33a-5p in tumor cells increased radiosensitivity via inhibiting glycolysis. In conclusions, miR-33a-5p promotes radiosensitivity by negatively regulating glycolysis in melanoma

    DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

    Full text link
    While self-supervised representation learning (SSL) has received widespread attention from the community, recent research argue that its performance will suffer a cliff fall when the model size decreases. The current method mainly relies on contrastive learning to train the network and in this work, we propose a simple yet effective Distilled Contrastive Learning (DisCo) to ease the issue by a large margin. Specifically, we find the final embedding obtained by the mainstream SSL methods contains the most fruitful information, and propose to distill the final embedding to maximally transmit a teacher's knowledge to a lightweight model by constraining the last embedding of the student to be consistent with that of the teacher. In addition, in the experiment, we find that there exists a phenomenon termed Distilling BottleNeck and present to enlarge the embedding dimension to alleviate this problem. Our method does not introduce any extra parameter to lightweight models during deployment. Experimental results demonstrate that our method achieves the state-of-the-art on all lightweight models. Particularly, when ResNet-101/ResNet-50 is used as teacher to teach EfficientNet-B0, the linear result of EfficientNet-B0 on ImageNet is very close to ResNet-101/ResNet-50, but the number of parameters of EfficientNet-B0 is only 9.4\%/16.3\% of ResNet-101/ResNet-50. Code is available at https://github. com/Yuting-Gao/DisCo-pytorch.Comment: ECCV 202

    Power-Law Decay of Standing Waves on the Surface of Topological Insulators

    Full text link
    We propose a general theory on the standing waves (quasiparticle interference pattern) caused by the scattering of surface states off step edges in topological insulators, in which the extremal points on the constant energy contour of surface band play the dominant role. Experimentally we image the interference patterns on both Bi2_2Te3_3 and Bi2_2Se3_3 films by measuring the local density of states using a scanning tunneling microscope. The observed decay indices of the standing waves agree excellently with the theoretical prediction: In Bi2_2Se3_3, only a single decay index of -3/2 exists; while in Bi2_2Te3_3 with strongly warped surface band, it varies from -3/2 to -1/2 and finally to -1 as the energy increases. The -1/2 decay indicates that the suppression of backscattering due to time-reversal symmetry does not necessarily lead to a spatial decay rate faster than that in the conventional two-dimensional electron system. Our formalism can also explain the characteristic scattering wave vectors of the standing wave caused by non-magnetic impurities on Bi2_2Te3_3.Comment: 4 pages, 3 figure

    Bank Credit Strategy Model Based on AHP-Fuzzy Comprehensive Evaluation

    Get PDF
    Credit risk control and credit strategy formulation of medium and micro enterprises have always been important strategic issues faced by commercial banks. Banks usually make corporate loan policies based on the credit degree, the information of trading bills and the relationship of supply-demand chain of the enterprise. In this paper, we established the AHP-Fuzzy comprehensive evaluation model for quantifying enterprise credit risk. Based on the relevant data of 123 enterprises with credit records, the credit strategy is formulated according to the three indicators of enterprise strength, enterprise reputation and stability of supply-demand relationship. This paper also combines the credit reputation, credit risk and supply and demand stability rating in order to establish the bank credit strategic planning model to decide whether to lend or not and the lending order. The conclusion shows that, under the condition of constant total loan amount, the enterprises with the highest credit rating should be given priority. Then, combined with the change of customer turnover rate with interest rate, we take the bank's maximize expected income as objective to calculate the optimal loan interest rate of different customer groups
    • …
    corecore