131 research outputs found

    De novo Biosynthesis of Biodiesel by Escherichia coli in Optimized Fed-Batch Cultivation

    Get PDF
    Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs), and is currently produced through the transesterification reaction of methanol (or ethanol) and triacylglycerols (TAGs). TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L−1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate

    TRPA1 Contributes to the Acute Inflammatory Response and Mediates Carrageenan-Induced Paw Edema in the Mouse

    Get PDF
    Transient receptor potential ankyrin 1 (TRPA1) is an ion channel involved in thermosensation and nociception. TRPA1 is activated by exogenous irritants and also by oxidants formed in inflammatory reactions. However, our understanding of its role in inflammation is limited. Here, we tested the hypothesis that TRPA1 is involved in acute inflammatory edema. The TRPA1 agonist allyl isothiocyanate (AITC) induced inflammatory edema when injected intraplantarly to mice, mimicking the classical response to carrageenan. Interestingly, the TRPA1 antagonist HC-030031 and the cyclo-oxygenase (COX) inhibitor ibuprofen inhibited not only AITC but also carrageenan-induced edema. TRPA1-deficient mice displayed attenuated responses to carrageenan and AITC. Furthermore, AITC enhanced COX-2 expression in HEK293 cells transfected with human TRPA1, a response that was reversed by HC-030031. This study demonstrates a hitherto unknown role of TRPA1 in carrageenan-induced inflammatory edema. The results also strongly suggest that TRPA1 contributes, in a COX-dependent manner, to the development of acute inflammation

    Soil pH mediates the balance between stochastic and deterministic assembly of bacteria

    Get PDF
    Little is known about the factors affecting the relative influences of stochastic and deterministic processes that govern the assembly of microbial communities in successional soils. Here, we conducted a meta-analysis of bacterial communities using six different successional soil datasets distributed across different regions. Different relationships between pH and successional age across these datasets allowed us to separate the influences of successional age (i.e., time) from soil pH. We found that extreme acidic or alkaline pH conditions lead to assembly of phylogenetically more clustered bacterial communities through deterministic processes, whereas pH conditions close to neutral lead to phylogenetically less clustered bacterial communities with more stochasticity. We suggest that the influence of pH, rather than successional age, is the main driving force in producing trends in phylogenetic assembly of bacteria, and that pH also influences the relative balance of stochastic and deterministic processes along successional soils. Given that pH had a much stronger association with community assembly than did successional age, we evaluated whether the inferred influence of pH was maintained when studying globally distributed samples collected without regard for successional age. This dataset confirmed the strong influence of pH, suggesting that the influence of soil pH on community assembly processes occurs globally. Extreme pH conditions likely exert more stringent limits on survival and fitness, imposing strong selective pressures through ecological and evolutionary time. Taken together, these findings suggest that the degree to which stochastic vs. deterministic processes shape soil bacterial community assembly is a consequence of soil pH rather than successional age

    Teacher Wellbeing: The Importance of Teacher–Student Relationships

    Get PDF
    Many studies have examined the importance of teacher-student relationships for the development of children. Much less is known, however, about how these relationships impact the professional and personal lives of teachers. This review considers the importance of teacher-student relationships for the wellbeing of teachers guided by the Transactional Model of Stress and Coping of Lazarus (1991). Based on theories on interpersonal relationships, it is postulated that teachers have a basic need for relatedness with the students in their class that originates from the close proximity between teacher and student. It is discussed that teachers internalize experiences with students in representational models of relationships that guide emotional responses in daily interactions with students, and changes teacher wellbeing in the long run. In addition, the notion of mental representations of relationships at different levels of generalization could offer a window to understand how individual teacher-student relationships may affect the professional and personal self-esteem of teachers. Lastly, it is argued that the influence of student misbehavior on teacher stress may be more fully understood from a relationship perspective. The review shows that few studies have directly tested these propositions and offers suggestions for future research

    Current understanding of the human microbiome

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Medicine 24 (2018): 392–400, doi:10.1038/nm.4517.Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes, and mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this Review, we focus on studies in humans to describe these challenges, and propose strategies that leverage existing knowledge to move rapidly from correlation to causation, and ultimately to translation.Many of the studies described here in our laboratories were supported by the NIH, NSF, DOE, and the Alfred P. Sloan Foundation.2018-10-1

    A critical discussion of the physics of wood–water interactions

    Get PDF
    corecore