43 research outputs found
On the Classification of Brane Tilings
We present a computationally efficient algorithm that can be used to generate
all possible brane tilings. Brane tilings represent the largest class of
superconformal theories with known AdS duals in 3+1 and also 2+1 dimensions and
have proved useful for describing the physics of both D3 branes and also M2
branes probing Calabi-Yau singularities. This algorithm has been implemented
and is used to generate all possible brane tilings with at most 6
superpotential terms, including consistent and inconsistent brane tilings. The
collection of inconsistent tilings found in this work form the most
comprehensive study of such objects to date.Comment: 33 pages, 12 figures, 15 table
Integrability on the Master Space
It has been recently shown that every SCFT living on D3 branes at a toric
Calabi-Yau singularity surprisingly also describes a complete integrable
system. In this paper we use the Master Space as a bridge between the
integrable system and the underlying field theory and we reinterpret the
Poisson manifold of the integrable system in term of the geometry of the field
theory moduli space.Comment: 47 pages, 20 figures, using jheppub.st
Emerging Non-Anomalous Baryonic Symmetries in the AdS_5/CFT_4 Correspondence
We study the breaking of baryonic symmetries in the AdS_5/CFT_4
correspondence for D3 branes at Calabi-Yau three-fold singularities. This
leads, for particular VEVs, to the emergence of non-anomalous baryonic
symmetries during the renormalization group flow. We claim that these VEVs
correspond to critical values of the B-field moduli in the dual supergravity
backgrounds. We study in detail the C^3/Z_3 orbifold, the cone over F_0 and the
C^3/Z_5 orbifold. For the first two examples, we study the dual supergravity
backgrounds that correspond to the breaking of the emerging baryonic symmetries
and identify the expected Goldstone bosons and global strings in the infra-red.
In doing so we confirm the claim that the emerging symmetries are indeed
non-anomalous baryonic symmetries.Comment: 65 pages, 15 figures;v2: minor changes, published versio
Network and Seiberg Duality
We define and study a new class of 4d N=1 superconformal quiver gauge
theories associated with a planar bipartite network. While UV description is
not unique due to Seiberg duality, we can classify the IR fixed points of the
theory by a permutation, or equivalently a cell of the totally non-negative
Grassmannian. The story is similar to a bipartite network on the torus
classified by a Newton polygon. We then generalize the network to a general
bordered Riemann surface and define IR SCFT from the geometric data of a
Riemann surface. We also comment on IR R-charges and superconformal indices of
our theories.Comment: 28 pages, 28 figures; v2: minor correction
Brane Tilings and Specular Duality
We study a new duality which pairs 4d N=1 supersymmetric quiver gauge
theories. They are represented by brane tilings and are worldvolume theories of
D3 branes at Calabi-Yau 3-fold singularities. The new duality identifies
theories which have the same combined mesonic and baryonic moduli space,
otherwise called the master space. We obtain the associated Hilbert series
which encodes both the generators and defining relations of the moduli space.
We illustrate our findings with a set of brane tilings that have reflexive
toric diagrams.Comment: 42 pages, 16 figures, 5 table
Probing the Space of Toric Quiver Theories
We demonstrate a practical and efficient method for generating toric Calabi-Yau quiver theories, applicable to both D3 and M2 brane world-volume physics. A new analytic method is presented at low order parametres and an algorithm for the general case is developed which has polynomial complexity in the number of edges in the quiver. Using this algorithm, carefully implemented, we classify the quiver diagram and assign possible superpotentials for various small values of the number of edges and nodes. We examine some preliminary statistics on this space of toric quiver theories
Symmetries of Abelian Orbifolds
Using the Polya Enumeration Theorem, we count with particular attention to
C^3/Gamma up to C^6/Gamma, abelian orbifolds in various dimensions which are
invariant under cycles of the permutation group S_D. This produces a collection
of multiplicative sequences, one for each cycle in the Cycle Index of the
permutation group. A multiplicative sequence is controlled by its values on
prime numbers and their pure powers. Therefore, we pay particular attention to
orbifolds of the form C^D/Gamma where the order of Gamma is p^alpha. We propose
a generalization of these sequences for any D and any p.Comment: 75 pages, 13 figures, 30 table
Counting Orbifolds
We present several methods of counting the orbifolds C^D/Gamma. A
correspondence between counting orbifold actions on C^D, brane tilings, and
toric diagrams in D-1 dimensions is drawn. Barycentric coordinates and scaling
mechanisms are introduced to characterize lattice simplices as toric diagrams.
We count orbifolds of C^3, C^4, C^5, C^6 and C^7. Some remarks are made on
closed form formulas for the partition function that counts distinct orbifold
actions.Comment: 69 pages, 9 figures, 24 tables; minor correction
Quivers, YBE and 3-manifolds
We study 4d superconformal indices for a large class of N=1 superconformal
quiver gauge theories realized combinatorially as a bipartite graph or a set of
"zig-zag paths" on a two-dimensional torus T^2. An exchange of loops, which we
call a "double Yang-Baxter move", gives the Seiberg duality of the gauge
theory, and the invariance of the index under the duality is translated into
the Yang-Baxter-type equation of a spin system defined on a "Z-invariant"
lattice on T^2. When we compactify the gauge theory to 3d, Higgs the theory and
then compactify further to 2d, the superconformal index reduces to an integral
of quantum/classical dilogarithm functions. The saddle point of this integral
unexpectedly reproduces the hyperbolic volume of a hyperbolic 3-manifold. The
3-manifold is obtained by gluing hyperbolic ideal polyhedra in H^3, each of
which could be thought of as a 3d lift of the faces of the 2d bipartite
graph.The same quantity is also related with the thermodynamic limit of the BPS
partition function, or equivalently the genus 0 topological string partition
function, on a toric Calabi-Yau manifold dual to quiver gauge theories. We also
comment on brane realization of our theories. This paper is a companion to
another paper summarizing the results.Comment: 61 pages, 16 figures; v2: typos correcte
Brane geometry and dimer models
The field content and interactions of almost all known gauge theories in AdS5/CFT4 can be expressed in terms of dimer models or bipartite graphs drawn on a torus. Associated with the fundamental cell is a complex structure parameter τ R . Based on the brane realization of these theories, we can specify a special Lagrangian (SLag) torus fibration that is the natural candidate to be identified as the torus on which the dimer lives. Using the metrics known in the literature, we compute the complex structure τ G of this torus. For the theories on ℂ3 and the conifold and for orbifolds thereof τ R = τ G . However, for more complicated examples, we show that the two complex structures cannot be equal and yet, remarkably, differ only by a few percent. We leave the explanation for this extraordinary proximity as an open challenge
