550 research outputs found

    Prefrontal Norepinephrine Determines Attribution of “High” Motivational Salience

    Get PDF
    Intense motivational salience attribution is considered to have a major role in the development of different psychopathologies. Numerous brain areas are involved in “normal” motivational salience attribution processes; however, it is not clear whether common or different neural mechanisms also underlie intense motivational salience attribution. To elucidate this a brain area and a neural system had to be envisaged that were involved only in motivational salience attribution to highly salient stimuli. Using intracerebral microdialysis, we found that natural stimuli induced an increase in norepinephrine release in the medial prefrontal cortex of mice proportional to their salience, and that selective prefrontal norepinephrine depletion abolished the increase of norepinephrine release in the medial prefrontal cortex induced by exposure to appetitive (palatable food) or aversive (light) stimuli independently of salience. However, selective norepinephrine depletion in the medial prefrontal cortex impaired the place conditioning induced exclusively by highly salient stimuli, thus indicating that prefrontal noradrenergic transmission determines approach or avoidance responses to both reward- and aversion-related natural stimuli only when the salience of the unconditioned natural stimulus is high enough to induce sustained norepinephrine outflow. This affirms that prefrontal noradrenergic transmission determines motivational salience attribution selectively when intense motivational salience is processed, as in conditions that characterize psychopathological outcomes

    Disentangling astroglial physiology with a realistic cell model in silico

    Get PDF
    Electrically non-excitable astroglia take up neurotransmitters, buffer extracellular K+ and generate Ca2+ signals that release molecular regulators of neural circuitry. The underlying machinery remains enigmatic, mainly because the sponge-like astrocyte morphology has been difficult to access experimentally or explore theoretically. Here, we systematically incorporate multi-scale, tri-dimensional astroglial architecture into a realistic multi-compartmental cell model, which we constrain by empirical tests and integrate into the NEURON computational biophysical environment. This approach is implemented as a flexible astrocyte-model builder ASTRO. As a proof-of-concept, we explore an in silico astrocyte to evaluate basic cell physiology features inaccessible experimentally. Our simulations suggest that currents generated by glutamate transporters or K+ channels have negligible distant effects on membrane voltage and that individual astrocytes can successfully handle extracellular K+ hotspots. We show how intracellular Ca2+ buffers affect Ca2+ waves and why the classical Ca2+ sparks-and-puffs mechanism is theoretically compatible with common readouts of astroglial Ca2+ imaging

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    UK Neovascular Age-Related Macular Degeneration Database. Report 6: time to retreatment after a pause in therapy. Outcomes from 92 976 intravitreal ranibizumab injections.

    Get PDF
    BACKGROUND/AIMS: To study the time to retreatment in eyes with neovascular age-related macular degeneration (nAMD) that had been treatment-free for intervals of 3 months, 6 months, 9 months and 12 months during the maintenance phase of ranibizumab therapy within the UK National Health Service. METHODS: In this multicentre national nAMD database study, structured data were collected from 14 centres (involving 12 951 eyes receiving 92 976 ranibizumab injections). Patients were treated with three fixed, monthly injections in a loading phase of treatment, followed by a pro re nata retreatment regimen in a maintenance phase. Eyes with a treatment-free interval (TFI) of 3 months, 6 months, 9 months or 12 months in the maintenance phase were identified and the time to retreatment after these TFIs was determined. RESULTS: The time to retreatment for the 20th and 50th centiles was 0.58/2.54 months after a 3-month TFI, 2.07/9.62 months after a 6-month TFI, 3.69/15.84 months after a 9-month TFI and 5.90/22.49 months after a 12-month TFI. Following a TFI of 3 months, 6 months, 9 months and 12 months, 68%, 44%, 31% and 21% of eyes required retreatments after an additional 6 months of follow-up, respectively. Similarly, after 12 months of follow-up, 77%, 56%, 43% and 34% of these eyes required retreatment. CONCLUSIONS: This study provides times to retreatment in eyes with nAMD that have been treatment-free for intervals of 3-12 months and demonstrates the likelihood of repeat therapy within the next year, even after a TFI of 12 months. These outcomes can help plan appropriate follow-up intervals for patients who have been treatment-free for intervals of up to 12 months

    Convergent Processing of Both Positive and Negative Motivational Signals by the VTA Dopamine Neuronal Populations

    Get PDF
    Dopamine neurons in the ventral tegmental area (VTA) have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ∼25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context

    Allergen immunotherapy in MASK-air users in real-life: Results of a Bayesian mixed-effects model

    Full text link
    Background Evidence regarding the effectiveness of allergen immunotherapy (AIT) on allergic rhinitis has been provided mostly by randomised controlled trials, with little data from real-life studies. Objective To compare the reported control of allergic rhinitis symptoms in three groups of users of the MASK-air(R) app: those receiving sublingual AIT (SLIT), those receiving subcutaneous AIT (SCIT), and those receiving no AIT. Methods We assessed the MASK-air(R) data of European users with self-reported grass pollen allergy, comparing the data reported by patients receiving SLIT, SCIT and no AIT. Outcome variables included the daily impact of allergy symptoms globally and on work (measured by visual analogue scales-VASs), and a combined symptom-medication score (CSMS). We applied Bayesian mixed-effects models, with clustering by patient, country and pollen season. Results We analysed a total of 42,756 days from 1,093 grass allergy patients, including 18,479 days of users under AIT. Compared to no AIT, SCIT was associated with similar VAS levels and CSMS. Compared to no AIT, SLIT-tablet was associated with lower values of VAS global allergy symptoms (average difference = 7.5 units out of 100; 95% credible interval [95%CrI] = -12.1;-2.8), lower VAS Work (average difference = 5.0; 95%CrI = -8.5;-1.5), and a lower CSMS (average difference = 3.7; 95%CrI = -9.3;2.2). When compared to SCIT, SLIT-tablet was associated with lower VAS global allergy symptoms (average difference = 10.2; 95%CrI = -17.2;-2.8), lower VAS Work (average difference = 7.8; 95%CrI = -15.1;0.2), and a lower CSMS (average difference = 9.3; 95%CrI = -18.5;0.2). Conclusion In patients with grass pollen allergy, SLIT-tablet, when compared to no AIT and to SCIT, is associated with lower reported symptom severity. Future longitudinal studies following internationally-harmonised standards for performing and reporting real-world data in AIT are needed to better understand its 'real-world' effectiveness

    Adherence to highly active antiretroviral therapy and its correlates among HIV infected pediatric patients in Ethiopia

    Get PDF
    BACKGROUND: The introduction of combination antiretroviral therapy (ART) has resulted in striking reductions in HIV-related mortality. Despite increased availability of ART, children remain a neglected population. This may be due to concerns that failure to adhere appears to be related to continued viral replication, treatment failure and the emergence of drug-resistant strains of HIV. This study determines the rates and factors associated with adherence to Antiretroviral (ARV) Drug therapy in HIV-infected children who were receiving Highly Active Antiretroviral Therapy (HAART) in Addis Ababa, Ethiopia in 2008. METHODS: A cross-sectional study was conducted in five hospitals in Addis Ababa from February 18 - April 28, 2008. The study population entailed parents/caretaker and index children who were following ART in the health facilities. A structured questionnaire was used for data collection. RESULTS: A total of 390 children respondents were included in the study with a response rate of 91%. The majority, equaling 205 (52.6%) of the children, were greater than 9 years of age. Fifty five percent of the children were girls. A total of 339 children (86.9%) as reported by caregivers were adherent to antiretroviral drugs for the past 7 days before the interview. Numerous variables were found to be significantly associated with adherence: children whose parents did not pay a fee for treatment [OR = 0.39 (95%CI: 0.16, 0.92)], children who had ever received any nutritional support from the clinic [OR = 0.34 (95%CI: 0.14, 0.79)] were less likely to adhere. Whereas children who took co-trimoxazole medication/syrup besides ARVs [OR = 3.65 (95%CI: 1.24, 10.74)], children who did not know their sero-status [OR = 2.53 (95%CI: 1.24, 5.19)] and children who were not aware of their caregiver's health problem [OR = 2.45 (95%CI: 1.25, 4.81)] were more likely to adhere than their counterparts. CONCLUSION: Adherence to HAART in children in Addis Ababa was higher than other similar set-ups. However, there are still significant numbers of children who are non-adherent to HAART

    An siRNA Screen in Pancreatic Beta Cells Reveals a Role for Gpr27 in Insulin Production

    Get PDF
    The prevalence of type 2 diabetes in the United States is projected to double or triple by 2050. We reasoned that the genes that modulate insulin production might be new targets for diabetes therapeutics. Therefore, we developed an siRNA screening system to identify genes important for the activity of the insulin promoter in beta cells. We created a subclone of the MIN6 mouse pancreatic beta cell line that expresses destabilized GFP under the control of a 362 base pair fragment of the human insulin promoter and the mCherry red fluorescent protein under the control of the constitutively active rous sarcoma virus promoter. The ratio of the GFP to mCherry fluorescence of a cell indicates its insulin promoter activity. As G protein coupled receptors (GPCRs) have emerged as novel targets for diabetes therapies, we used this cell line to screen an siRNA library targeting all known mouse GPCRs. We identified several known GPCR regulators of insulin secretion as regulators of the insulin promoter. One of the top positive regulators was Gpr27, an orphan GPCR with no known role in beta cell function. We show that knockdown of Gpr27 reduces endogenous mouse insulin promoter activity and glucose stimulated insulin secretion. Furthermore, we show that Pdx1 is important for Gpr27's effect on the insulin promoter and insulin secretion. Finally, the over-expression of Gpr27 in 293T cells increases inositol phosphate levels, while knockdown of Gpr27 in MIN6 cells reduces inositol phosphate levels, suggesting this orphan GPCR might couple to Gq/11. In summary, we demonstrate a MIN6-based siRNA screening system that allows rapid identification of novel positive and negative regulators of the insulin promoter. Using this system, we identify Gpr27 as a positive regulator of insulin production

    Multisite Phosphorylation Provides an Effective and Flexible Mechanism for Switch-Like Protein Degradation

    Get PDF
    Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically determine the exact extent to which the degradation profile is switch-like. Our results suggest design principles for protein degradation switches which might be a widespread mechanism for precise regulation of cellular processes such as cell cycle progression
    corecore