797 research outputs found
Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE
Probabilistic modelling has been an essential tool in medical image analysis,
especially for analyzing brain Magnetic Resonance Images (MRI). Recent deep
learning techniques for estimating high-dimensional distributions, in
particular Variational Autoencoders (VAEs), opened up new avenues for
probabilistic modeling. Modelling of volumetric data has remained a challenge,
however, because constraints on available computation and training data make it
difficult effectively leverage VAEs, which are well-developed for 2D images. We
propose a method to model 3D MR brain volumes distribution by combining a 2D
slice VAE with a Gaussian model that captures the relationships between slices.
We do so by estimating the sample mean and covariance in the latent space of
the 2D model over the slice direction. This combined model lets us sample new
coherent stacks of latent variables to decode into slices of a volume. We also
introduce a novel evaluation method for generated volumes that quantifies how
well their segmentations match those of true brain anatomy. We demonstrate that
our proposed model is competitive in generating high quality volumes at high
resolutions according to both traditional metrics and our proposed evaluation.Comment: accepted for publication at MICCAI 2020. Code available
https://github.com/voanna/slices-to-3d-brain-vae
Highly photoresponsive and wavelength-selective circularly-polarized-light detector based on metal-oxides hetero-chiral thin film
A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of similar to 15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses.1166Ysciescopu
The effect of umbilical cord blood derived mesenchymal stem cells in monocrotaline-induced pulmonary artery hypertension rats
Pulmonary arterial hypertension (PAH) causes right ventricular failure due to a gradual increase in pulmonary vascular resistance. The purposes of this study were to confirm the engraftment of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) placed in the correct place in the lung and research on changes of hemodynamics, pulmonary pathology, immunomodulation and several gene expressions in monocrotaline (MCT)induced PAH rat models after hUCB-MSCs transfusion. The rats were grouped as follows: the control (C) group; the M group (MCT 60 mg/kg); the U group (hUCB-MSCs transfusion). They received transfusions via the external jugular vein a week after MCT injection. The mean right ventricular pressure (RVP) was significantly reduced in the U group after the 2 week. The indicators of RV hypertrophy were significantly reduced in the U group at week 4. Reduced medial wall thickness in the pulmonary arteriole was noted in the U group at week 4. Reduced number of intra-acinar muscular pulmonary arteries was observed in the U group after 2 week. Protein expressions such as endothelin (ET)-1, endothelin receptor A (ERA), endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase (MMP)-2 significantly decreased at week 4. The decreased levels of ERA, eNOS and MMP-2 immunoreactivity were noted by immnohistochemical staining. After hUCB-MSCs were administered, there were the improvement of RVH and mean RVP. Reductions in several protein expressions and immunomodulation were also detected. It is suggested that hUCB-MSCs may be a promising therapeutic option for PAH.1174Ysciescopu
Hydrocephalus caused by conditional ablation of the Pten or beta-catenin gene
To investigate the roles of Pten and β-Catenin in the midbrain, either the Pten gene or the β-catenin gene was conditionally ablated, using Dmbx1 (diencephalon/mesencephalon-expressed brain homeobox gene 1)-Cre mice. Homozygous disruption of the Pten or β-catenin gene in Dmbx1-expressing cells caused severe hydrocephalus and mortality during the postnatal period. Conditional deletion of Pten resulted in enlargement of midbrain structures. β-catenin conditional mutant mice showed malformation of the superior and inferior colliculi and stenosis of the midbrain aqueduct. These results demonstrate that both Pten and β-Catenin are essential for proper midbrain development, and provide the direct evidence that mutations of both Pten and β-catenin lead to hydrocephalus
Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions
The rise of topological phases of matter is strongly connected to their
potential to host Majorana bound states, a powerful ingredient in the search
for a robust, topologically protected, quantum information processing. In order
to produce such states, a method of choice is to induce superconductivity in
topological insulators. The engineering of the interplay between
superconductivity and the electronic properties of a topological insulator is a
challenging task and it is consequently very important to understand the
physics of simple superconducting devices such as Josephson junctions, in which
new topological properties are expected to emerge. In this article, we review
recent experiments investigating topological superconductivity in topological
insulators, using microwave excitation and detection techniques. More
precisely, we have fabricated and studied topological Josephson junctions made
of HgTe weak links in contact with two Al or Nb contacts. In such devices, we
have observed two signatures of the fractional Josephson effect, which is
expected to emerge from topologically-protected gapless Andreev bound states.
We first recall the theoretical background on topological Josephson junctions,
then move to the experimental observations. Then, we assess the topological
origin of the observed features and conclude with an outlook towards more
advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017,
published in "Topological Matter. Springer Series in Solid-State Sciences,
vol 190. Springer
Clear cell carcinoma arising in previous episiotomy scar: a case report and review of the literature
The vitamin D receptor polymorphism in the translation initiation codon is a risk factor for insulin resistance in glucose tolerant Caucasians
BACKGROUND: Although vitamin D receptor (VDR) polymorphisms have been shown to be associated with abnormal glucose metabolism, the reported polymorphisms are unlikely to have any biological consequences. The VDR gene has two potential translation initiation sites. A T-to-C polymorphism has been noted in the first ATG (f allele), abolishing the first translation initiation site and resulting in a peptide lacking the first three amino acids (F allele). We examined the role of this polymorphism in insulin sensitivity and beta cell function. This study included 49 healthy Caucasian subjects (28 females, age 28 ± 1 years old, body mass index 24.57 ± 0.57 kg/m(2), waist-hip ratio 0.81 ± 0.01 cm/cm). They were all normotensive (less than 140/90 mmHg) and glucose tolerant, which was determined by a standard 75-gm oral glucose tolerance test. Their beta cell function (%B) and insulin sensitivity (%S) were calculated based on the Homeostasis Model Assessment (HOMA). Their genotypes were determined by a polymerase chain reaction-restriction fragment length polymorphism analysis. Phenotypes were compared between genotypic groups. RESULTS: There were 18 FF, 21 Ff, and 10 ff subjects. Since only 10 ff subjects were identified, they were pooled with the Ff subjects during analyses. The FF and Ff/ff groups had similar glucose levels at each time point before and after a glucose challenge. The Ff/ff group had higher insulin levels than the FF group at fasting (P=0.006), 30 minutes (P=0.009), 60 minutes (P=0.049), and 90 minutes (P=0.042). Furthermore, the Ff/ff group also had a larger insulin area under the curve than the FF group (P=0.009). While no difference was noted in %B, the Ff/ff group had a lower %S than the FF group (0.53 vs. 0.78, P=0.006). A stepwise regression analysis confirmed that the Fok I polymorphism was an independent determinant for %S, accounting for 29.3% of variation in %S when combined with waist-hip ratio. CONCLUSIONS: We report that the Fok I polymorphism at the VDR gene locus is associated with insulin sensitivity, but has no influence on beta cell function in healthy Caucasians. Although this polymorphism has been shown to affect the activation of vitamin D-dependent transcription, the molecular basis of the association between this polymorphism and insulin resistance remains to be determined
Dynamics of Vulmar/VulMITE group of transposable elements in Chenopodiaceae subfamily Betoideae
Transposable elements are important factors driving plant genome evolution. Upon their mobilization, novel insertion polymorphisms are being created. We investigated differences in copy number and insertion polymorphism of a group of Mariner-like transposable elements Vulmar and related VulMITE miniature inverted-repeat transposable elements (MITEs) in species representing subfamily Betoideae. Insertion sites of these elements were identified using a modified transposon display protocol, allowing amplification of longer fragments representing regions flanking insertion sites. Subsequently, a subset of TD fragments was converted into insertion site-based polymorphism (ISBP) markers. The investigated group of transposable elements was the most abundant in accessions representing the section Beta, showing intraspecific insertion polymorphisms likely resulting from their recent activity. In contrast, no unique insertions were observed for species of the genus Beta section Corollinae, while a set of section-specific insertions was observed in the genus Patellifolia, however, only two of them were polymorphic between P. procumbens and P. webbiana. We hypothesize that Vulmar and VulMITE elements were inactivated in the section Corollinae, while they remained active in the section Beta and the genus Patellifolia. The ISBP markers generally confirmed the insertion patterns observed with TD markers, including presence of distinct subsets of TE insertions specific to Beta and Patellifolia
Identification of a Topological Characteristic Responsible for the Biological Robustness of Regulatory Networks
Attribution of biological robustness to the specific structural properties of a regulatory network is an important yet unsolved problem in systems biology. It is widely believed that the topological characteristics of a biological control network largely determine its dynamic behavior, yet the actual mechanism is still poorly understood. Here, we define a novel structural feature of biological networks, termed ‘regulation entropy’, to quantitatively assess the influence of network topology on the robustness of the systems. Using the cell-cycle control networks of the budding yeast (Saccharomyces cerevisiae) and the fission yeast (Schizosaccharomyces pombe) as examples, we first demonstrate the correlation of this quantity with the dynamic stability of biological control networks, and then we establish a significant association between this quantity and the structural stability of the networks. And we further substantiate the generality of this approach with a broad spectrum of biological and random networks. We conclude that the regulation entropy is an effective order parameter in evaluating the robustness of biological control networks. Our work suggests a novel connection between the topological feature and the dynamic property of biological regulatory networks
The Chromatin Remodeler SPLAYED Regulates Specific Stress Signaling Pathways
Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks
- …