32 research outputs found

    Eimeripain, a Cathepsin B-Like Cysteine Protease, Expressed throughout Sporulation of the Apicomplexan Parasite Eimeria tenella

    Get PDF
    The invasion and replication of Eimeria tenella in the chicken intestine is responsible for avian coccidiosis, a disease that has major economic impacts on poultry industries worldwide. E. tenella is transmitted to naïve animals via shed unsporulated oocysts that need contact with air and humidity to form the infectious sporulated oocysts, which contain the first invasive form of the parasite, the sporozoite. Cysteine proteases (CPs) are major virulence factors expressed by protozoa. In this study, we show that E. tenella expresses five transcriptionally regulated genes encoding one cathepsin L, one cathepsin B and three cathepsin Cs. Biot-LC-LVG-CHN2, a cystatin derived probe, tagged eight polypeptides in unsporulated oocysts but only one in sporulated oocysts. CP-dependant activities were found against the fluorescent substrates, Z-FR-AMC and Z-LR-AMC, throughout the sporulation process. These activities corresponded to a cathepsin B-like enzyme since they were inhibited by CA-074, a specific cathepsin B inhibitor. A 3D model of the catalytic domain of the cathepsin B-like protease, based on its sequence homology with human cathepsin B, further confirmed its classification as a papain-like protease with similar characteristics to toxopain-1 from the related apicomplexan parasite, Toxoplasma gondii; we have, therefore, named the E. tenella cathepsin B, eimeripain. Following stable transfection of E. tenella sporozoites with a plasmid allowing the expression of eimeripain fused to the fluorescent protein mCherry, we demonstrated that eimeripain is detected throughout sporulation and has a punctate distribution in the bodies of extra- and intracellular parasites. Furthermore, CA-074 Me, the membrane-permeable derivative of CA-074, impairs invasion of epithelial MDBK cells by E. tenella sporozoites. This study represents the first characterization of CPs expressed by a parasite from the Eimeria genus. Moreover, it emphasizes the role of CPs in transmission and dissemination of exogenous stages of apicomplexan parasites

    Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma is the most lethal primary malignant brain tumor. Although considerable progress has been made in the treatment of this aggressive tumor, the clinical outcome for patients remains poor. Histone deacetylases (HDACs) are recognized as promising targets for cancer treatment. In the past several years, HDAC inhibitors (HDACis) have been used as radiosensitizers in glioblastoma treatment. However, no study has demonstrated the status of global <it>HDAC </it>expression in gliomas and its possible correlation to the use of HDACis. The purpose of this study was to evaluate and compare mRNA and protein levels of class I, II and IV of HDACs in low grade and high grade astrocytomas and normal brain tissue and to correlate the findings with the malignancy in astrocytomas.</p> <p>Methods</p> <p>Forty-three microdissected patient tumor samples were evaluated. The histopathologic diagnoses were 20 low-grade gliomas (13 grade I and 7 grade II) and 23 high-grade gliomas (5 grade III and 18 glioblastomas). Eleven normal cerebral tissue samples were also analyzed (54 total samples analyzed). mRNA expression of class I, II, and IV <it>HDACs </it>was studied by quantitative real-time polymerase chain reaction and normalized to the housekeeping gene <it>β-glucuronidase</it>. Protein levels were evaluated by western blotting.</p> <p>Results</p> <p>We found that mRNA levels of class II and IV <it>HDACs </it>were downregulated in glioblastomas compared to low-grade astrocytomas and normal brain tissue (7 in 8 genes, <it>p </it>< 0.05). The protein levels of class II HDAC9 were also lower in high-grade astrocytomas than in low-grade astrocytomas and normal brain tissue. Additionally, we found that histone H3 (but not histone H4) was more acetylated in glioblastomas than normal brain tissue.</p> <p>Conclusion</p> <p>Our study establishes a negative correlation between <it>HDAC </it>gene expression and the glioma grade suggesting that class II and IV <it>HDACs </it>might play an important role in glioma malignancy. Evaluation of histone acetylation levels showed that histone H3 is more acetylated in glioblastomas than normal brain tissue confirming the downregulation of <it>HDAC </it>mRNA in glioblastomas.</p

    Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration.

    Get PDF
    Following severe or chronic liver injury, adult ductal cells (cholangiocytes) contribute to regeneration by restoring both hepatocytes and cholangiocytes. We recently showed that ductal cells clonally expand as self-renewing liver organoids that retain their differentiation capacity into both hepatocytes and ductal cells. However, the molecular mechanisms by which adult ductal-committed cells acquire cellular plasticity, initiate organoids and regenerate the damaged tissue remain largely unknown. Here, we describe that ductal cells undergo a transient, genome-wide, remodelling of their transcriptome and epigenome during organoid initiation and in vivo following tissue damage. TET1-mediated hydroxymethylation licences differentiated ductal cells to initiate organoids and activate the regenerative programme through the transcriptional regulation of stem-cell genes and regenerative pathways including the YAP-Hippo signalling. Our results argue in favour of the remodelling of genomic methylome/hydroxymethylome landscapes as a general mechanism by which differentiated cells exit a committed state in response to tissue damage.RCUK Cancer Research UK ERC H2020 Wellcome Trus

    High-throughput profiling of caenorhabditis elegans starvation-responsive microRNAs

    Get PDF
    MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6-20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans
    corecore