65 research outputs found
Impact of fuel energy prices in Tunisia
The policy of subsidizing petroleum derivatives in Tunisia distorts the real prices of goods and services. It does not take care on environment. There is no serious fiscal policies to reduce pollution generated by energy products.The calculation of the correlation matrix between different macroeconomic aggregates does not give a negative effect of oil prices on national GDP. However, this result is serious, because the impact on economic (performance) is hidden, affecting first the general level of prices, unemployment and inflation. Instability of oil prices has no apparent impact. This fact and instability make many difficulties to manage prices and inflation after revolution. Impact on GDP passes through Economic Vulnerability Indicator (EVI) and agricultural sector.
Geometric Approaches for 3D Shape Denoising and Retrieval
A key issue in developing an accurate 3D shape recognition system is to design an efficient shape
descriptor for which an index can be built, and similarity queries can be answered efficiently. While
the overwhelming majority of prior work on 3D shape analysis has concentrated primarily on rigid
shape retrieval, many real objects such as articulated motions of humans are nonrigid and hence
can exhibit a variety of poses and deformations.
Motivated by the recent surge of interest in content-based analysis of 3D objects in computeraided
design and multimedia computing, we develop in this thesis a unified theoretical and computational
framework for 3D shape denoising and retrieval by incorporating insights gained from
algebraic graph theory and spectral geometry. We first present a regularized kernel diffusion for
3D shape denoising by solving partial differential equations in the weighted graph-theoretic framework.
Then, we introduce a computationally fast approach for surface denoising using the vertexcentered
finite volume method coupled with the mesh covariance fractional anisotropy. Additionally,
we propose a spectral-geometric shape skeleton for 3D object recognition based on the second
eigenfunction of the Laplace-Beltrami operator in a bid to capture the global and local geometry
of 3D shapes. To further enhance the 3D shape retrieval accuracy, we introduce a graph matching
approach by assigning geometric features to each endpoint of the shape skeleton. Extensive experiments
are carried out on two 3D shape benchmarks to assess the performance of the proposed
shape retrieval framework in comparison with state-of-the-art methods. The experimental results
show that the proposed shape descriptor delivers best-in-class shape retrieval performance
Dynamic Facial Expression Generation on Hilbert Hypersphere with Conditional Wasserstein Generative Adversarial Nets
In this work, we propose a novel approach for generating videos of the six
basic facial expressions given a neutral face image. We propose to exploit the
face geometry by modeling the facial landmarks motion as curves encoded as
points on a hypersphere. By proposing a conditional version of manifold-valued
Wasserstein generative adversarial network (GAN) for motion generation on the
hypersphere, we learn the distribution of facial expression dynamics of
different classes, from which we synthesize new facial expression motions. The
resulting motions can be transformed to sequences of landmarks and then to
images sequences by editing the texture information using another conditional
Generative Adversarial Network. To the best of our knowledge, this is the first
work that explores manifold-valued representations with GAN to address the
problem of dynamic facial expression generation. We evaluate our proposed
approach both quantitatively and qualitatively on two public datasets;
Oulu-CASIA and MUG Facial Expression. Our experimental results demonstrate the
effectiveness of our approach in generating realistic videos with continuous
motion, realistic appearance and identity preservation. We also show the
efficiency of our framework for dynamic facial expressions generation, dynamic
facial expression transfer and data augmentation for training improved emotion
recognition models
FREE TRADE AGREEMENT BETWEEN TUNISIA AND THE EUROPEAN UNION, DO INSTITUTIONS MATTER?: AN EMPIRICAL VALIDATION BY A GRAVITY MODEL
Abstract Tunisia has signed a free trade agreement with the European Union in 1996, which provides for the reduction of tariff barriers between Tunisia and the EU. In this article, we aim to know and test whether the similarity of the institutional framework has to stimulate international trade between Tunisia and the European Union. In this context, we built a variable called "Institutional distance" to valid the institutional dimension of international trade, near borders effects reported in the literature. To this end, a gravity model was used initially (Tunisia and 21 European countries). Secondly, the estimate shows the existence of spatial autocorrelation. The latter has been corrected using spatial econometrics. The results show that the geographical distance remains more important than the institutions in this type of agreement between north and south shores of the Mediterranean
Automatic Analysis of Facial Expressions Based on Deep Covariance Trajectories
In this paper, we propose a new approach for facial expression recognition
using deep covariance descriptors. The solution is based on the idea of
encoding local and global Deep Convolutional Neural Network (DCNN) features
extracted from still images, in compact local and global covariance
descriptors. The space geometry of the covariance matrices is that of Symmetric
Positive Definite (SPD) matrices. By conducting the classification of static
facial expressions using Support Vector Machine (SVM) with a valid Gaussian
kernel on the SPD manifold, we show that deep covariance descriptors are more
effective than the standard classification with fully connected layers and
softmax. Besides, we propose a completely new and original solution to model
the temporal dynamic of facial expressions as deep trajectories on the SPD
manifold. As an extension of the classification pipeline of covariance
descriptors, we apply SVM with valid positive definite kernels derived from
global alignment for deep covariance trajectories classification. By performing
extensive experiments on the Oulu-CASIA, CK+, and SFEW datasets, we show that
both the proposed static and dynamic approaches achieve state-of-the-art
performance for facial expression recognition outperforming many recent
approaches.Comment: A preliminary version of this work appeared in "Otberdout N, Kacem A,
Daoudi M, Ballihi L, Berretti S. Deep Covariance Descriptors for Facial
Expression Recognition, in British Machine Vision Conference 2018, BMVC 2018,
Northumbria University, Newcastle, UK, September 3-6, 2018. ; 2018 :159."
arXiv admin note: substantial text overlap with arXiv:1805.0386
Gram Matrices Formulation of Body Shape Motion: An Application for Depression Severity Assessment
International audienceWe propose an automatic method to measure depression severity from body movement dynamics in participants undergoing treatment for depression. Participants were recorded in clinical interviews (Hamilton Rating Scale for Depression, HRSD) at seven-week intervals over a period of 21 weeks. Gram matrices formulation was used for body shape and trajectories representation from each video interview. Kinematic features were then extracted and encoded for video based representation using Gaussian Mixture Models (GMM) and Fisher vector encoding. A multi-class SVM was finally used to classify the encoded body movement dynamics into three levels of depression severity scores: moderate to severely depressed, mildly depressed, and remitted. Accuracy was higher for moderate to severe depression (68%) followed by mild depression (56%), and then remitted (37.93%). The obtained results suggest that automatic detection of depression severity from body movement is feasible
Automatic Analysis of Facial Expressions Based on Deep Covariance Trajectories
International audienceIn this paper, we propose a new approach for facial expression recognition using deep covariance descriptors. The solution is based on the idea of encoding local and global Deep Convolutional Neural Network (DCNN) features extracted from still images, in compact local and global covariance descriptors. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By conducting the classification of static facial expressions using Support Vector Machine (SVM) with a valid Gaussian kernel on the SPD manifold, we show that deep covariance descriptors are more effective than the standard classification with fully connected layers and softmax. Besides, we propose a completely new and original solution to model the temporal dynamic of facial expressions as deep trajectories on the SPD manifold. As an extension of the classification pipeline of covariance descriptors, we apply SVM with valid positive definite kernels derived from global alignment for deep covariance trajectories classification. By performing extensive experiments on the Oulu-CASIA, CK+, SFEW and AFEW datasets, we show that both the proposed static and dynamic approaches achieve state-of-the-art performance for facial expression recognition outperforming many recent approaches
Discriminator-free Unsupervised Domain Adaptation for Multi-label Image Classification
In this paper, a discriminator-free adversarial-based Unsupervised Domain
Adaptation (UDA) for Multi-Label Image Classification (MLIC) referred to as
DDA-MLIC is proposed. Over the last two years, some attempts have been made for
introducing adversarial-based UDA methods in the context of MLIC. However,
these methods which rely on an additional discriminator subnet present two
shortcomings. First, the learning of domain-invariant features may harm their
task-specific discriminative power, since the classification and discrimination
tasks are decoupled. Moreover, the use of an additional discriminator usually
induces an increase of the network size. Herein, we propose to overcome these
issues by introducing a novel adversarial critic that is directly deduced from
the task-specific classifier. Specifically, a two-component Gaussian Mixture
Model (GMM) is fitted on the source and target predictions, allowing the
distinction of two clusters. This allows extracting a Gaussian distribution for
each component. The resulting Gaussian distributions are then used for
formulating an adversarial loss based on a Frechet distance. The proposed
method is evaluated on three multi-label image datasets. The obtained results
demonstrate that DDA-MLIC outperforms existing state-of-the-art methods while
requiring a lower number of parameters
- …