34 research outputs found

    Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil

    No full text
    © 2016, Springer-Verlag Berlin Heidelberg. Biochar may alleviate plant water stress in association with arbuscular mycorrhizal (AM) fungi but research has not been conclusive. Therefore, a glasshouse experiment was conducted to understand how interactions between AM fungi and plants respond to biochar application under water-stressed conditions. A twin chamber pot system was used to determine whether a woody biochar increased root colonisation by a natural AM fungal population in a pasture soil (‘field’ chamber) and whether this was associated with increased growth of extraradical AM fungal hyphae detected by plants growing in an adjacent (‘bait’) chamber containing irradiated soil. The two chambers were separated by a mesh that excluded roots. Subterranean clover was grown with and without water stress and harvested after 35, 49 and 63 days from each chamber. When biochar was applied to the field chamber under water-stressed conditions, shoot mass increased in parallel with mycorrhizal colonisation, extraradical hyphal length and shoot phosphorus concentration. AM fungal colonisation of roots in the bait chamber indicated an increase in extraradical mycorrhizal hyphae in the field chamber. Biochar had little effect on AM fungi or plant growth under well-watered conditions. The biochar-induced increase in mycorrhizal colonisation was associated with increased growth of extraradical AM fungal hyphae in the pasture soil under water-stressed conditions

    Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds

    No full text
    The functionality or survival of tissue engineering constructs depends on the adequate vascularization through oxygen transport and metabolic waste removal at the core. This study reports the presence of magnesium and silicon in 3D printed tricalcium phosphate (TCP) scaffolds promotes in vivo osteogenesis and angiogenesis when tested in rat distal femoral defect model. Scaffolds with three different interconnected macro pore sizes were fabricated using direct three dimensional printing (3DP). In vitro release in phosphate buffer for 30 days showed sustained Mg(2+) and Si(4+) release from these scaffolds. Histolomorphology and histomorphometric analysis from the histology tissue sections revealed a significantly higher bone, between 14 and 20 % for 4 to 16 weeks, and blood vessel, between 3 and 6% for 4 to 12 weeks, formation due to the presence of magnesium and silicon in TCP scaffolds compared to bare TCP scaffolds. The presence of magnesium in these 3DP TCP scaffolds also caused delayed TRAP activity. These results show that magnesium and silicon incorporated 3DP TCP scaffolds with multiscale porosity have huge potential for bone tissue repair and regeneration
    corecore