25 research outputs found

    Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation

    Full text link

    The photocatalytic decomposition of chloroform by tetrachloroaurate(III)

    No full text
    Near-UV irradiation of solutions of (Bu4N)AuCl4 in aerated ethanol-stabilized chloroform causes the continuous decomposition of chloroform, as evidenced by the production of many equivalents of HCl and peroxides. At the outset of irradiation, most of the AuCl4 − is reduced to AuCl2 −, but the reduction stops and is reversed. The same experiments done in ethanol-free chloroform cause chloroform decomposition only until the irreversible reduction of the gold is complete. In deoxygenated ethanol-free chloroform, irreversible reduction to AuCl2 − is accompanied by the formation of HCl and CCl4, while the main decomposition products in deoxygenated ethanol-stabilized chloroform are HCl and C2Cl6. It is proposed that, in ethanol-free chloroform, photoreduction of AuCl4 − begins with the concerted elimination of HCl from an association complex of CHCl3 with AuCl4 −, and that ethanol suppresses{CHCl3⋅AuCl−4}{CHCl3⋅AuCl4−} complex formation, leaving a slower radical process to carry out the photoreduction of AuCl4 − in ethanol-stabilized chloroform. In the presence of oxygen, the radical process causes a build-up of CCl3OOH, which reoxidizes AuCl2 − to AuCl4 − and allows the photodecomposition of CHCl3 to continue indefinitely

    CD1d deficiency inhibits the development of abdominal aortic aneurysms in LDL receptor deficient mice

    Get PDF
    <div><p>An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these inflammatory cells into tissues and thereby contributing to the development of AAA is angiotensin II (Ang II). We demonstrate that a deficiency in CD1d dependent NKT cells under hyperlipidemic conditions (LDLr<sup>-/-</sup>CD1d<sup>-/-</sup> mice) results in a strong decline in the severity of angiotensin II induced aneurysm formation when compared with LDLr<sup>-/-</sup> mice. In addition, we show that Ang II amplifies the activation of NKT cells both <i>in vivo</i> and <i>in vitro</i>. We also provide evidence that type I NKT cells contribute to AAA development by inducing the expression of matrix degrading enzymes in vSMCs and macrophages, and by cytokine dependently decreasing vSMC viability. Altogether, these data prove that CD1d-dependent NKT cells contribute to AAA development in the Ang II-mediated aneurysm model by enhancing aortic degradation, establishing that therapeutic applications which target NKT cells can be a successful way to prevent AAA development.</p></div
    corecore