16 research outputs found
The Kuiper Belt and Other Debris Disks
We discuss the current knowledge of the Solar system, focusing on bodies in
the outer regions, on the information they provide concerning Solar system
formation, and on the possible relationships that may exist between our system
and the debris disks of other stars. Beyond the domains of the Terrestrial and
giant planets, the comets in the Kuiper belt and the Oort cloud preserve some
of our most pristine materials. The Kuiper belt, in particular, is a
collisional dust source and a scientific bridge to the dusty "debris disks"
observed around many nearby main-sequence stars. Study of the Solar system
provides a level of detail that we cannot discern in the distant disks while
observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book
"Astrophysics in the Next Decade
Recommended from our members
Accurate Photometry of Saturated Stars Using the Point-spread-function Wing Technique with Spitzer
We report Spitzer 3.6 and 4.5 μm photometry of 11 bright stars relative to Sirius, exploiting the unique optical stability of the Spitzer Space Telescope point-spread function (PSF). Spitzer's extremely stable beryllium optics in its isothermal environment enables precise comparisons in the wings of the PSF from heavily saturated stars. These bright stars stand as the primary sample to improve stellar models, and to transfer the absolute flux calibration of bright standard stars to a sample of fainter standards useful for missions like JWST and for large ground-based telescopes. We demonstrate that better than 1% relative photometry can be achieved using the PSF wing technique in the radial range of 20″-100″ for stars that are fainter than Sirius by 8 mag (from outside the saturated core to a large radius where a high signal-to-noise ratio profile can still be obtained). We test our results by (1) comparing the [3.6]-[4.5] color with that expected between the WISE W1 and W2 bands, (2) comparing with stars where there is accurate K S photometry, and (3) also comparing with relative fluxes obtained with the DIRBE instrument on COBE. These tests confirm that relative photometry is achieved to better than 1%. © 2022. The Author(s). Published by the American Astronomical Society..Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
The Geometry of the G29-38 White Dwarf Dust Disk from Radiative Transfer Modeling
Many white dwarfs host disks of dust produced by disintegrating planetesimals and revealed by infrared excesses. The disk around G29-38 was the first to be discovered and is now well-observed, yet we lack a cohesive picture of its geometry and dust properties. Here we model the G29-38 disk for the first time using radiative transfer calculations that account for radial and vertical temperature and optical depth gradients. We arrive at a set of models that can match the available infrared measurements well, although they overpredict the width of the 10 μm silicate feature. The resulting set of models has a disk inner edge located at 92-100 R WD (where R WD is the white dwarf radius). This is farther from the star than inferred by previous modeling efforts due to the presence of a directly illuminated front edge to the disk. The radial width of the disk is narrow (≤10 R WD); such a feature could be explained by inefficient spreading or the proximity of the tidal disruption radius to the sublimation radius. The models have a half-opening angle of ≥1.°4. Such structure would be in strong contradiction with the commonly employed flat-disk model analogous to the rings of Saturn, and in line with the vertical structure of main-sequence debris disks. Our results are consistent with the idea that disks are collisionally active and continuously fed with new material, rather than evolving passively after the disintegration of a single planetesimal. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Extreme variability of the V488 Persei debris disk
V488 Persei is the most extreme debris disk known in terms of the fraction of the stellar luminosity it intercepts and reradiates. The infrared output of its disk is extremely variable, similar in this respect to the most variable disk known previously, that around ID8 in NGC 2547. We show that the variations are likely to be due to collisions of large planetesimals (≳100 km in diameter) in a belt being stirred gravitationally by a planetary or low-mass-brown-dwarf member of a planetary system around the star. The dust being produced by the resulting collisions is falling into the star due to drag by the stellar wind. The indicated planetesimal destruction rate is so high that it is unlikely that the current level of activity can persist for much longer than ∼1000–10,000 yr and it may signal a major realignment of the configuration of the planetary system. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
High-Resolution Near-Infrared Imaging and Polarimetry of Four Proto-Planetary Nebulae
High-resolution near-infrared Hubble Space Telescope (HST) NICMOS (F160W, F222M) images and polarization (2 mum) observations were made of four bipolar proto-planetary nebulae (PPNs): IRAS 17150-3224, 17441-2411, 17245-3951, and 16594-4656. The first three of these are viewed nearly edge-on, and for the first time the central stars in them are seen. Color maps reveal a reddened torus between the bipolr lobes in the edge-on cases, with bluer lobes. The polarization values are high, with maximum values ranging from 40% to 80%. The polarization patterns are basically centrosymmetric, with some deviations in the low-polarization equatorial regions. For IRAS 17150-3224, circumstellar arcs are seen at 1.6 mum, along with a newly discovered loop in the equatorial region. Bright caps are seen at the end of the lobes, indicating that they are not open-ended. A distinct point-symmetric pattern is seen in the strengths of the polarization vectors, especially in IRAS 17150-3224. HST NICMOS observations provide a valuable complement to the WFPC2 visible images in deriving the basic structure of bipolar PPNs
A Star-sized Impact-produced Dust Clump in the Terrestrial Zone of the HD 166191 System
We report on five years of 3-5 μm photometry measurements obtained by warm Spitzer to track the dust debris emission in the terrestrial zone of HD 166191 in combination with simultaneous optical data. We show that the debris production in this young (∼10 Myr) system increased significantly in early 2018 and reached a record high level (almost double by mid 2019) by the end of the Spitzer mission (early 2020), suggesting intense collisional activity in its terrestrial zone likely due to either initial assembling of terrestrial planets through giant impacts or dynamical shake-up from unseen planet-mass objects or recent planet migration. This intense activity is further highlighted by detecting a star-size dust clump, passing in front of the star, in the midst of its infrared brightening. We constrain the minimum size and mass of the clump using multiwavelength transit profiles and conclude that the dust clump is most likely created by a large impact involving objects of several hundred kilometers in size with an apparent period of 142 days (i.e., 0.62 au, assuming a circular orbit). The system's evolutionary state (right after the dispersal of its gas-rich disk) makes it extremely valuable to learn about the process of terrestrial-planet formation and planetary architecture through future observations. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Using H2 Emission to Study the Fast Wind in Proto-Planetary Nebulae
We present the results of a high-resolution H 2 imaging and spectroscopic study of four bipolar proto-planetary nebulae: IRAS 16594-4656, Hen 3-401, Rob 22, and IRAS 17150-3224. These reveal the locations and kinematics of the H 2 emission and the shaping of the nebulae by their collimated fast winds. © 2006 International Astronomical Union.link_to_subscribed_fulltex
Recommended from our members
Resolving Structure in the Debris Disk around HD 206893 with ALMA
Debris disks are tenuous, dusty belts surrounding main-sequence stars generated by collisions between planetesimals. HD 206893 is one of only two stars known to host a directly imaged brown dwarf orbiting interior to its debris ring, in this case at a projected separation of 10.4 au. Here we resolve structure in the debris disk around HD 206893 at an angular resolution of 0.″6 (24 au) and wavelength of 1.3 mm with the Atacama Large Millimeter/submillimeter Array (ALMA). We observe a broad disk extending from a radius of <51 au to 194-2+13 au. We model the disk with a continuous, gapped, and double power-law model of the surface density profile and find strong evidence for a local minimum in the surface density distribution near a radius of 70 au, consistent with a gap in the disk with an inner radius of 63-16+8 au and width 31-7+11 au. Gapped structure has been observed in four other debris disks - essentially every other radially resolved debris disk observed with sufficient angular resolution and sensitivity with ALMA - and could be suggestive of the presence of an additional planetary-mass companion. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
RZ Piscium Hosts a Compact and Highly Perturbed Debris Disk
RZ Piscium (RZ Psc) is well known in the variable star field because of its numerous irregular optical dips in the past 5 decades, but the nature of the system is heavily debated in the literature. We present multiyear infrared monitoring data from Spitzer and WISE to track the activities of the inner debris production, revealing stochastic infrared variability as short as weekly timescales that is consistent with destroying a 90 km sized asteroid every year. ALMA 1.3 mm data combined with spectral energy distribution modeling show that the disk is compact (∼0.1-13 au radially) and lacks cold gas. The disk is found to be highly inclined and has a significant vertical scale height. These observations confirm that RZ Psc hosts a close to edge-on, highly perturbed debris disk possibly due to migration of recently formed giant planets that might be triggered by the low-mass companion RZ Psc B if the planets formed well beyond the snowlines. © 2023. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]