11 research outputs found

    Cavity-enhanced direct frequency comb spectroscopy

    Full text link
    Cavity-enhanced direct frequency comb spectroscopy combines broad spectral bandwidth, high spectral resolution, precise frequency calibration, and ultrahigh detection sensitivity, all in one experimental platform based on an optical frequency comb interacting with a high-finesse optical cavity. Precise control of the optical frequency comb allows highly efficient, coherent coupling of individual comb components with corresponding resonant modes of the high-finesse cavity. The long cavity lifetime dramatically enhances the effective interaction between the light field and intracavity matter, increasing the sensitivity for measurement of optical losses by a factor that is on the order of the cavity finesse. The use of low-dispersion mirrors permits almost the entire spectral bandwidth of the frequency comb to be employed for detection, covering a range of ~10% of the actual optical frequency. The light transmitted from the cavity is spectrally resolved to provide a multitude of detection channels with spectral resolutions ranging from a several gigahertz to hundreds of kilohertz. In this review we will discuss the principle of cavity-enhanced direct frequency comb spectroscopy and the various implementations of such systems. In particular, we discuss several types of UV, optical, and IR frequency comb sources and optical cavity designs that can be used for specific spectroscopic applications. We present several cavity-comb coupling methods to take advantage of the broad spectral bandwidth and narrow spectral components of a frequency comb. Finally, we present a series of experimental measurements on trace gas detections, human breath analysis, and characterization of cold molecular beams.Comment: 36 pages, 27 figure

    C2O4 Carbon dioxide dimer

    No full text

    Validation of the Aura Microwave Limb Sounder HNO3 Measurements

    Get PDF
    [1] We assess the quality of the version 2.2 (v2.2) HNO(3) measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO(3) product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO(3) data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of similar to 0.7 ppbv throughout. Vertical resolution is 3-4 km in the upper troposphere and lower stratosphere, degrading to similar to 5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO(3) measurements biases that vary with altitude between +/- 0.5 and +/- 2 ppbv and multiplicative errors of +/- 5-15% throughout the stratosphere, rising to similar to +/- 30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO(3) measurements from ground- based, balloon- borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO(3) mixing ratios are uniformly low by 10-30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO(3) values are low in this region as well, but are useful for scientific studies (with appropriate averaging)
    corecore