6 research outputs found

    Ballistic electron transport through magnetic domain walls

    Full text link
    Electron transport limited by the rotating exchange-potential of domain walls is calculated in the ballistic limit for the itinerant ferromagnets Fe, Co, and Ni. When realistic band structures are used, the domain wall magnetoresistance is enhanced by orders of magnitude compared to the results for previously studied two-band models. Increasing the pitch of a domain wall by confinement in a nano-structured point contact is predicted to give rise to a strongly enhanced magnetoresistance.Comment: 4 pages, 2 figures; to appear in PRB as a brief repor

    Influence of Grain Boundary Character on Creep Void Formation in Alloy 617

    Get PDF
    Alloy 617, a high temperature creep-resistant, nickel-based alloy, is being considered for the primary heat exchanger for the Next Generation Nuclear Plant (NGNP) which will operate at temperatures exceeding 760oC. Orientation imaging microscopy (OIM) is used to characterize the grain boundaries in the vicinity of creep voids that develop during high temperature creep tests (800-1000oC at creep stresses ranging from 20-85 MPa) terminated at creep strains ranging from 5-40%. Observations using optical microscopy indicate creep rate does not significantly influence the creep void fraction at a given creep strain. Preliminary analysis of the OIM data indicates voids tend to form on grain boundaries parallel, perpendicular or 45o to the tensile axis, while few voids are found at intermediate inclinations to the tensile axis. Random grain boundaries intersect most voids while CSL-related grain boundaries did not appear to be consistently associated with void development
    corecore