5 research outputs found
Defect-induced condensation and central peak at elastic phase transitions
Static and dynamical properties of elastic phase transitions under the
influence of short--range defects, which locally increase the transition
temperature, are investigated. Our approach is based on a Ginzburg--Landau
theory for three--dimensional crystals with one--, two-- or three--dimensional
soft sectors, respectively. Systems with a finite concentration of
quenched, randomly placed defects display a phase transition at a temperature
, which can be considerably above the transition temperature
of the pure system. The phonon correlation function is calculated in
single--site approximation. For a dynamical central peak
appears; upon approaching , its height diverges and its width
vanishes. Using an appropriate self--consistent method, we calculate the
spatially inhomogeneous order parameter, the free energy and the specific heat,
as well as the dynamical correlation function in the ordered phase. The
dynamical central peak disappears again as the temperatur is lowered below
. The inhomogeneous order parameter causes a static central
peak in the scattering cross section, with a finite width depending on the
orientation of the external wave vector relative to the soft sector.
The jump in the specific heat at the transition temperatur of the pure system
is smeared out by the influence of the defects, leading to a distinct maximum
instead. In addition, there emerges a tiny discontinuity of the specific heat
at . We also discuss the range of validity of the mean--field
approach, and provide a more realistic estimate for the transition temperature.Comment: 11 pages, 11 ps-figures, to appear in PR