592 research outputs found
Strength Reduction in Electrical and Elastic Networks
Particular aspects of problems ranging from dielectric breakdown to metal
insu- lator transition can be studied using electrical o elastic networks. We
present an expression for the mean breakdown strength of such networks.First,
we intro- duce a method to evaluate the redistribution of current due to the
removal of a finite number of elements from a hyper-cubic network of
conducatances.It is used to determine the reduction of breakdown strength due
to a fracture of size .Numerical analysis is used to show that the
analogous reduction due to random removal of elements from electrical and
elastic networks follow a similar form.One possible application, namely the use
of bone density as a diagnostic tools for osteorosporosis,is discussed.Comment: one compressed file includes: 9 PostScrpt figures and a text fil
Dynamics of false vacuum bubbles in Brans-Dicke theory
We study the dynamics of false vacuum bubbles in the Brans-Dicke theory of
gravity by using the thin shell or thin wall approximation. We consider a false
vacuum bubble that has a different value for the Brans-Dicke field between the
inside false vacuum region and the outside true vacuum region. Within a certain
limit of field values, the difference of field values makes the effective
tension of the shell negative. This allows new expanding false vacuum bubbles
to be seen by the outside observer, which are disallowed in Einstein gravity.Comment: 29 pages, 20 figure
Pion emission in 2H, 12C, 27Al, gamma pi+ reactions at threshold
The first data from MAX-lab in Lund, Sweden on pion production in
photonuclear reactions at threshold energies, is presented. The decrease of the
total yield of pi+ in gamma + 12C, 27Al reactions below 200 MeV as well as
differential, dsigma/dOmega, cross sections follow essentially predictions from
an intranuclear cascade model with an attractive potential for pion-nucleus
interaction in its simplest form. Double differential, d2sigma/dOmegadT, cross
sections at 176 MeV show, however, deviations from the model, which call for
refinements of nuclear and Coulomb potentials and possibly also for coherent
pion production mechanisms.Comment: 19 pages, 7 figure
Near-threshold measurement of the 4He(g,n) reaction
A near-threshold 4He(g,n) cross-section measurement has been performed at
MAX-lab. Tagged photons from 23 < Eg < 42 MeV were directed toward a liquid 4He
target, and neutrons were detected by time-of-flight in two liquid-scintillator
arrays. Seven-point angular distributions were measured for eight photon
energies. The results are compared to experimental data measured at comparable
energies and Recoil-Corrected Continuum Shell Model, Resonating Group Method,
and recent Hyperspherical-Harmonic Expansion calculations. The angle-integrated
cross-section data is peaked at a photon energy of about 28 MeV, in
disagreement with the value recommended by Calarco, Berman, and Donnelly in
1983.Comment: 10 pages, 3 figures, some revisions, submitted to Physics Letters
Fractional Langevin equation
We investigate fractional Brownian motion with a microscopic random-matrix
model and introduce a fractional Langevin equation. We use the latter to study
both sub- and superdiffusion of a free particle coupled to a fractal heat bath.
We further compare fractional Brownian motion with the fractal time process.
The respective mean-square displacements of these two forms of anomalous
diffusion exhibit the same power-law behavior. Here we show that their lowest
moments are actually all identical, except the second moment of the velocity.
This provides a simple criterion which enables to distinguish these two
non-Markovian processes.Comment: 4 page
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview
Here, we review the basic concepts and applications of the
phase-field-crystal (PFC) method, which is one of the latest simulation
methodologies in materials science for problems, where atomic- and microscales
are tightly coupled. The PFC method operates on atomic length and diffusive
time scales, and thus constitutes a computationally efficient alternative to
molecular simulation methods. Its intense development in materials science
started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88
(2002), p. 245701]. Since these initial studies, dynamical density functional
theory and thermodynamic concepts have been linked to the PFC approach to serve
as further theoretical fundaments for the latter. In this review, we summarize
these methodological development steps as well as the most important
applications of the PFC method with a special focus on the interaction of
development steps taken in hard and soft matter physics, respectively. Doing
so, we hope to present today's state of the art in PFC modelling as well as the
potential, which might still arise from this method in physics and materials
science in the nearby future.Comment: 95 pages, 48 figure
Low-Energy Universality in Atomic and Nuclear Physics
An effective field theory developed for systems interacting through
short-range interactions can be applied to systems of cold atoms with a large
scattering length and to nucleons at low energies. It is therefore the ideal
tool to analyze the universal properties associated with the Efimov effect in
three- and four-body systems. In this "progress report", we will discuss recent
results obtained within this framework and report on progress regarding the
inclusion of higher order corrections associated with the finite range of the
underlying interaction.Comment: Commissioned article for Few-Body Systems, 47 pp, 16 fig
Threshold criterion for wetting at the triple point
Grand canonical simulations are used to calculate adsorption isotherms of
various classical gases on alkali metal and Mg surfaces. Ab initio adsorption
potentials and Lennard-Jones gas-gas interactions are used. Depending on the
system, the resulting behavior can be nonwetting for all temperatures studied,
complete wetting, or (in the intermediate case) exhibit a wetting transition.
An unusual variety of wetting transitions at the triple point is found in the
case of a specific adsorption potential of intermediate strength. The general
threshold for wetting near the triple point is found to be close to that
predicted with a heuristic model of Cheng et al. This same conclusion was drawn
in a recent experimental and simulation study of Ar on CO_2 by Mistura et al.
These results imply that a dimensionless wetting parameter w is useful for
predicting whether wetting behavior is present at and above the triple
temperature. The nonwetting/wetting crossover value found here is w circa 3.3.Comment: 15 pages, 8 figure
- …