17 research outputs found
Quark cluster signatures in deuteron electromagnetic interactions
A suggestion is made for distinguishing 2N and 6q short range correlations
within the deuteron. The suggestion depends upon observing high momentum
backward nucleons emerging from inelastic electromagnetic scattering from a
deuteron target. A simple model is worked out to see the size of effects that
may be expected.Comment: 18 pages (3 figures available as hard copy), WM-94-10
Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x
A detailed study of inclusive deep inelastic scattering (DIS) from mirror A =
3 nuclei at large values of the Bjorken variable x is presented. The main
purpose is to estimate the theoretical uncertainties on the extraction of the
neutron DIS structure function from such nuclear measurements. On one hand,
within models in which no modification of the bound nucleon structure functions
is taken into account, we have investigated the possible uncertainties arising
from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii)
finite Q**2 effects neglected in the Bjorken limit, iii) the role of different
prescriptions for the nucleon Spectral Function normalization providing baryon
number conservation, and iv) the differences between the virtual nucleon and
light cone formalisms. Although these effects have been not yet considered in
existing analyses, our conclusion is that all these effects cancel at the level
of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other
hand we have considered several models in which the modification of the bound
nucleon structure functions is accounted for to describe the EMC effect in DIS
scattering from nuclei. It turns out that within these models the cancellation
of nuclear effects is expected to occur only at a level of ~ 3%, leading to an
accuracy of ~ 12 % in the extraction of the neutron to proton structure
function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad
range of models of the EMC effect is that the previously suggested iteration
procedure does not improve the accuracy of the extraction of the neutron to
proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in
Section 4; no change in the conclusion
Unitarity and Interfering Resonances in pipi Scattering and in Pion Production piN->pipiN
Additivity of Breit-Wigner phases has been proposed to describe interfering
resonances in partial waves in scattering. This assumption leads to an
expression for partial wave amplitudes that involves products of Breit-Wigner
amplitudes. We show that this expression is equivalent to a coherent sum of
Breit-Wigner amplitudes with specific complex coefficients which depend on the
resonance parameters of all contributing resonances. We use analyticity of
partial wave amplitudes to show that they must have the form of a
coherent sum of Breit-Wigner amplitudes with complex coefficients and a complex
coherent background. The assumption of additivity of Breit-Wigner phases
restricts the partial waves to analytical functions with very specific form of
residues of Breit-Wigner poles. We argue that the general form provided by the
analyticity is more appropriate in fits to data to determine resonance
parameters. The partial wave unitarity can be imposed using the modern methods
of constrained optimization. We discuss unitarity and the production amplitudes
in and use analyticity in the dipion mass variable to
justify the common practice of writing the production amplitudes as a coherent
sum of Breit-Wigner amplitudes with free complex coefficients and a complex
coherent background in fits to mass spectra with interfering resonances.Comment: 31 page
Recommended from our members
Reactions probing effects of quark clusters in nuclei
We study signatures of quark clusters in reactions which probe quarks in nuclei. We examine the EMC effect and use physical arguments to establish features of valence and ocean parton distributions in multiquark clusters. We predict from these distributions ratios of structure functions and cross sections measured with neutrino, antineutrinos and proton beams. It appears that a unique determination of the source of the EMC effect will be possible. 6 refs., 4 figs
Recommended from our members
Constraints from jet calculus on quark recombination
Within the QCD jet calculus formalism, we deduce an equation describing recombination of quarks and antiquarks into mesons within a quark or gluon jet. This equation relates the recombination function R(x/sub 1/,x/sub 2/,x) used in current literature to the fragmentation function for producing that same meson out of the parton initiating the jet. We submit currently used recombination functions to our consistency test, taking as input mainly the u-quark fragmentation data into ..pi../sup +/ mesons, but also s-quark fragmentation into K/sup -/ mesons. The constraint is well satisfied at large Q/sup 2/ for large moments. Our results depend on one parameter, Q/sub 0//sup 2/, the constraint equation being satisfied for small values of this parameter
Behavioral activation versus treatment as usual in naturalistic sample of psychiatric patients with depressive symptoms: A benchmark controlled trial
publishedVersionPeer reviewe