282 research outputs found

    Electron correlation energy in confined two-electron systems

    Full text link
    Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05 - 10 a0. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z > 1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy

    Net Fisher information measure versus ionization potential and dipole polarizability in atoms

    Get PDF
    The net Fisher information measure, defined as the product of position and momentum Fisher information measures and derived from the non-relativistic Hartree-Fock wave functions for atoms with Z=1-102, is found to correlate well with the inverse of the experimental ionization potential. Strong direct correlations of the net Fisher information are also reported for the static dipole polarizability of atoms with Z=1-88. The complexity measure, defined as the ratio of the net Onicescu information measure and net Fisher information, exhibits clearly marked regions corresponding to the periodicity of the atomic shell structure. The reported correlations highlight the need for using the net information measures in addition to either the position or momentum space analogues. With reference to the correlation of the experimental properties considered here, the net Fisher information measure is found to be superior than the net Shannon information entropy.Comment: 16 pages, 6 figure

    Effect of Processing on Morphology of Hydroxyapatites: Bioactive Glasses and Crystalline Composites

    Get PDF
    Recent studies on multinary oxides for applications as laser hosts and high dielectric capacitors have shown that processing at high temperature provides glassy or crystalline materials based on thermal treatments and cooling rates. Since hydroxyapatites are now subject of great interests due to their bioactivity, interest in producing soft and hard materials with glassy and crystalline nature by processing parameters has become very important. Crystalline materials by using Bridgman, Czochralski and flux growth methods are costly and require huge investment. We have observed that even low temperature solidification in organic flux produced oriented fibers. This organic treated material has different characteristics than in situ oxide materials prepared by sintering and grain growth. Examples of phosphate and silicate-based systems will be presented to demonstrate soft and hard materials. Effect of TiO2 and other hardening elements will be also reported

    Cosmic F- and D-strings

    Full text link
    Macroscopic fundamental and Dirichlet strings have several potential instabilities: breakage, tachyon decays, and confinement by axion domain walls. We investigate the conditions under which metastable strings can exist, and we find that such strings are present in many models. There are various possibilities, the most notable being a network of (p,q) strings. Cosmic strings give a potentially large window into string physics.Comment: 27 pages, 5 figures; v. 5: JHEP style, added comments in section 2.

    Deviation From \Lambda CDM With Cosmic Strings Networks

    Full text link
    In this work, we consider a network of cosmic strings to explain possible deviation from \Lambda CDM behaviour. We use different observational data to constrain the model and show that a small but non zero contribution from the string network is allowed by the observational data which can result in a reasonable departure from \Lambda CDM evolution. But by calculating the Bayesian Evidence, we show that the present data still strongly favour the concordance \Lambda CDM model irrespective of the choice of the prior.Comment: 15 Pages, Latex Style, 4 eps figures, Revised Version, Accepted for publication in European Physical Journal

    Response function analysis of excited-state kinetic energy functional constructed by splitting k-space

    Full text link
    Over the past decade, fundamentals of time independent density functional theory for excited state have been established. However, construction of the corresponding energy functionals for excited states remains a challenging problem. We have developed a method for constructing functionals for excited states by splitting k-space according to the occupation of orbitals. In this paper we first show the accuracy of kinetic energy functional thus obtained. We then perform a response function analysis of the kinetic energy functional proposed by us and show why method of splitting the k-space could be the method of choice for construction of energy functionals for excited states.Comment: 11 page

    Scaling properties of composite information measures and shape complexity for hydrogenic atoms in parallel magnetic and electric fields

    Get PDF
    The scaling properties of various composite information-theoretic measures (Shannon and R\'enyi entropy sums, Fisher and Onicescu information products, Tsallis entropy ratio, Fisher-Shannon product and shape complexity) are studied in position and momentum spaces for the non-relativistic hydrogenic atoms in the presence of parallel magnetic and electric fields. Such measures are found to be invariant at the fixed values of the scaling parameters given by s1=B3(4πϵ0)2/(Z2m2e3)s_1 = B \hbar^3(4\pi\epsilon_0)^2 / (Z^2m^2e^3) and s2=F4(4πϵ0)3/(Z3e5m2)s_2 = F \hbar^4(4\pi\epsilon_0)^3 / (Z^3e^5m^2). Numerical results which support the validity of the scaling properties are shown by choosing the representative example of the position space shape complexity. Physical significance of the resulting scaling behaviour is discussed.Comment: 10 pages, 2 figure

    Statefinder Parameter for Varying G in Three Fluid System

    Full text link
    In this work, we have considered variable G in flat FRW universe filled with the mixture of dark energy, dark matter and radiation. If there is no interaction between the three fluids, the deceleration parameter and statefinder parameters have been calculated in terms of dimensionless density parameters which can be fixed by observational data. Also the interaction between three fluids has been analyzed due to constant GG. The statefinder parameters also calculated in two cases: pressure is constant and pressure is variable.Comment: 5 pages, Accepted for publication in "Astrophysics and Space Science

    Quasinormal modes for tensor and vector type perturbation of Gauss Bonnet black holes using third order WKB approach

    Full text link
    We obtain the quasinormal modes for tensor perturbations of Gauss-Bonnet (GB) black holes in d=5,7,8d=5, 7, 8 dimensions and vector perturbations in d=5,6,7d = 5, 6, 7 and 8 dimensions using third order WKB formalism. The tensor perturbation for black holes in d=6d=6 is not considered because of the fact that it is unstable to tensor mode perturbations. In the case of uncharged GB black hole, for both tensor and vector perturbations, the real part of the QN frequency increases as the Gauss-Bonnet coupling (α\alpha') increases. The imaginary part first decreases upto a certain value of α\alpha' and then increases with α\alpha' for both tensor and vector perturbations. For larger values of α\alpha', the QN frequencies for vector perturbation differs slightly from the QN frequencies for tensorial one. It has also been shown that as α0\alpha' \to 0, the quasinormal mode frequency for tensor and vector perturbation of the Schwarzschild black hole can be obtained. We have also calculated the quasinormal spectrum of the charged GB black hole for tensor perturbations. Here we have found that the real oscillation frequency increases, while the imaginary part of the frequency falls with the increase of the charge. We also show that the quasinormal frequencies for scalar field perturbations and the tensor gravitational perturbations do not match as was claimed in the literature. The difference in the result increases if we increase the GB coupling.Comment: 17 pages, 11 figures, change in title and abstract, new equations and results added for QN frequencies for vector perturbations, new referencees adde

    Possible dark energy imprints in gravitational wave spectrum of mixed neutron-dark-energy stars

    Full text link
    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.Comment: 17 pages, 8 figures, LaTe
    corecore