647 research outputs found

    Markov Chain Methods For Analyzing Complex Transport Networks

    Full text link
    We have developed a steady state theory of complex transport networks used to model the flow of commodity, information, viruses, opinions, or traffic. Our approach is based on the use of the Markov chains defined on the graph representations of transport networks allowing for the effective network design, network performance evaluation, embedding, partitioning, and network fault tolerance analysis. Random walks embed graphs into Euclidean space in which distances and angles acquire a clear statistical interpretation. Being defined on the dual graph representations of transport networks random walks describe the equilibrium configurations of not random commodity flows on primary graphs. This theory unifies many network concepts into one framework and can also be elegantly extended to describe networks represented by directed graphs and multiple interacting networks.Comment: 26 pages, 4 figure

    Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12

    Get PDF
    The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and x-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T, showing a minor but significant dependence of the dielectric constant on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.Comment: 10 pages, 11 figure

    SuperWIMP Dark Matter Signals from the Early Universe

    Get PDF
    Cold dark matter may be made of superweakly-interacting massive particles, superWIMPs, that naturally inherit the desired relic density from late decays of metastable WIMPs. Well-motivated examples are weak-scale gravitinos in supergravity and Kaluza-Klein gravitons from extra dimensions. These particles are impossible to detect in all dark matter experiments. We find, however, that superWIMP dark matter may be discovered through cosmological signatures from the early universe. In particular, superWIMP dark matter has observable consequences for Big Bang nucleosynthesis and the cosmic microwave background (CMB), and may explain the observed underabundance of 7Li without upsetting the concordance between deuterium and CMB baryometers. We discuss implications for future probes of CMB black body distortions and collider searches for new particles. In the course of this study, we also present a model-independent analysis of entropy production from late-decaying particles in light of WMAP data.Comment: 19 pages, 5 figures, typos correcte

    Spectra of complex networks

    Full text link
    We propose a general approach to the description of spectra of complex networks. For the spectra of networks with uncorrelated vertices (and a local tree-like structure), exact equations are derived. These equations are generalized to the case of networks with correlations between neighboring vertices. The tail of the density of eigenvalues ρ(λ)\rho(\lambda) at large λ|\lambda| is related to the behavior of the vertex degree distribution P(k)P(k) at large kk. In particular, as P(k)kγP(k) \sim k^{-\gamma}, ρ(λ)λ12γ\rho(\lambda) \sim |\lambda|^{1-2\gamma}. We propose a simple approximation, which enables us to calculate spectra of various graphs analytically. We analyse spectra of various complex networks and discuss the role of vertices of low degree. We show that spectra of locally tree-like random graphs may serve as a starting point in the analysis of spectral properties of real-world networks, e.g., of the Internet.Comment: 10 pages, 4 figure

    Turbulent Thermalization

    Full text link
    We study, analytically and with lattice simulations, the decay of coherent field oscillations and the subsequent thermalization of the resulting stochastic classical wave-field. The problem of reheating of the Universe after inflation constitutes our prime motivation and application of the results. We identify three different stages of these processes. During the initial stage of ``parametric resonance'', only a small fraction of the initial inflaton energy is transferred to fluctuations in the physically relevant case of sufficiently large couplings. A major fraction is transfered in the prompt regime of driven turbulence. The subsequent long stage of thermalization classifies as free turbulence. During the turbulent stages, the evolution of particle distribution functions is self-similar. We show that wave kinetic theory successfully describes the late stages of our lattice calculation. Our analytical results are general and give estimates of reheating time and temperature in terms of coupling constants and initial inflaton amplitude.Comment: 27 pages, 13 figure

    Scoping review : intergenerational resource transfer and possible enabling factors

    Get PDF
    We explore the intergenerational pattern of resource transfer and possible associated factors. A scoping review was conducted of quantitative, peer-reviewed, English-language studies related to intergenerational transfer or interaction. We searched AgeLine, PsycINFO, Social Work Abstracts, and Sociological Abstracts for articles published between Jane 2008 and December 2018. Seventy-five studies from 25 countries met the inclusion criteria. The scoping review categorised resource transfers into three types: financial, instrumental, and emotional support. Using an intergenerational solidarity framework, factors associated with intergenerational transfer were placed in four categories: (1) demographic factors (e.g., age, gender, marital status, education, and ethno-cultural background); (2) needs and opportunities factors, including health, financial resources, and employment status; (3) family structures, namely, family composition, family relationship, and earlier family events; and (4) cultural-contextual structures, including state policies and social norms. Those factors were connected to the direction of resource transfer between generations. Downward transfers from senior to junior generations occur more frequently than upward transfers in many developed countries. Women dominate instrumental transfers, perhaps influenced by traditional gender roles. Overall, the pattern of resource transfer between generations is shown, and the impact of social norms and social policy on intergenerational transfers is highlighted. Policymakers should recognise the complicated interplay of each factor with different cultural contexts. The findings could inform policies that strengthen intergenerational solidarity and support.</jats:p

    Systemic Delivery of Oncolytic Adenoviruses Targeting Transforming Growth Factor-β Inhibits Established Bone Metastasis in a Prostate Cancer Mouse Model

    Full text link
    Abstract We have examined whether Ad.sT?RFc and TAd.sT?RFc, two oncolytic viruses expressing soluble transforming growth factor-? receptor II fused with human Fc (sTGF?RIIFc), can be developed to treat bone metastasis of prostate cancer. Incubation of PC-3 and DU-145 prostate tumor cells with Ad.sT?RFc and TAd.sT?RFc produced sTGF?RIIFc and viral replication; sTGF?RIIFc caused inhibition of TGF-?-mediated SMAD2 and SMAD3 phosphorylation. Ad(E1-).sT?RFc, an E1? adenovirus, produced sTGF?RIIFc but failed to replicate in tumor cells. To examine the antitumor response of adenoviral vectors, PC-3-luc cells were injected into the left heart ventricle of nude mice. On day 9, mice were subjected to whole-body bioluminescence imaging (BLI). Mice bearing hind-limb tumors were administered viral vectors via the tail vein on days 10, 13, and 17 (2.5?1010 viral particles per injection per mouse, each injection in a 0.1-ml volume), and subjected to BLI and X-ray radiography weekly until day 53. Ad.sT?RFc, TAd.sT?RFc, and Ad(E1-).sT?RFc caused significant inhibition of tumor growth; however, Ad.sT?RFc was the most effective among all the vectors. Only Ad.sT?RFc and TAd.sT?RFc inhibited tumor-induced hypercalcemia. Histomorphometric and synchrotron micro-computed tomographic analysis of isolated bones indicated that Ad.sT?RFc induced significant reduction in tumor burden, osteoclast number, and trabecular and cortical bone destruction. These studies suggest that Ad.sT?RFc and TAd.sT?RFc can be developed as potential new therapies for prostate cancer bone metastasis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98454/1/hum%2E2012%2E040.pd

    Brane World Cosmology with Gauss-Bonnet Interaction

    Get PDF
    We study a Randall-Sundrum model modified by a Gauss-Bonnet interaction term. We consider, in particular, a Friedmann-Robertson-Walker metric on the brane and analyse the resulting cosmological scenario. It is shown that the usual Friedmann equations are recovered on the brane. The equation of state relating the enery density and the pressure is uniquely determined by the matching conditions. A cosmological solution with negative pressure is found.Comment: 9 pages, revtex styl

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    The Mathematical Universe

    Full text link
    I explore physics implications of the External Reality Hypothesis (ERH) that there exists an external physical reality completely independent of us humans. I argue that with a sufficiently broad definition of mathematics, it implies the Mathematical Universe Hypothesis (MUH) that our physical world is an abstract mathematical structure. I discuss various implications of the ERH and MUH, ranging from standard physics topics like symmetries, irreducible representations, units, free parameters, randomness and initial conditions to broader issues like consciousness, parallel universes and Godel incompleteness. I hypothesize that only computable and decidable (in Godel's sense) structures exist, which alleviates the cosmological measure problem and help explain why our physical laws appear so simple. I also comment on the intimate relation between mathematical structures, computations, simulations and physical systems.Comment: Replaced to match accepted Found. Phys. version, 31 pages, 5 figs; more details at http://space.mit.edu/home/tegmark/toe.htm
    corecore