176 research outputs found

    The Standard Model in Strong Fields: Electroweak Radiative Corrections for Highly Charged Ions

    Get PDF
    Electroweak radiative corrections to the matrix elements <ns1/2∣H^PNC∣n′p1/2><ns_{1/2}|{\hat H}_{PNC}|n'p_{1/2}> are calculated for highly charged hydrogenlike ions. These matrix elements constitute the basis for the description of the most parity nonconserving (PNC) processes in atomic physics. The operator H^PNC{\hat H}_{PNC} represents the parity nonconserving relativistic effective atomic Hamiltonian at the tree level. The deviation of these calculations from the calculations valid for the momentum transfer q2=0q^{2}=0 demonstrates the effect of the strong field, characterized by the momentum transfer q2=me2q^{2}=m_{e}^{2} (mem_{e} is the electron mass). This allows for a test of the Standard Model in the presence of strong fields in experiments with highly charged ions.Comment: 27 LaTex page

    Adiabatic Pair Creation

    Full text link
    We give here the proof that pair creation in a time dependent potentials is possible. It happens with probability one if the potential changes adiabatically in time and becomes overcritical, that is when an eigenvalue enters the upper spectral continuum. The potential may be assumed to be zero at large negative and positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Suessmann in 1963 and Gershtein and Zeldovich in 1970.Comment: 53 pages, 1 figure. Editorial changes on page 22 f

    A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry

    Get PDF
    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions

    Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    Full text link
    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-ZZ ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of Quantum Electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-ZZ ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in Nature.Comment: Version 18/11/0

    Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The proteasome inhibitor bortezomib has shown impressive clinical activity alone and in combination with conventional and other novel agents for the treatment of multiple myeloma (MM) and some solid cancers. Although bortezomib is known to be a selective proteasome inhibitor, the downstream mechanisms of cytotoxicity and drug resistance are poorly understood.</p> <p>Methods</p> <p>Proteasome activity, intracellular glutathione (GSH) and ROS levels, as well as activities of GSH synthesis enzymes were measured using spectrophotometric methods. Cell death was analyzed using flow cytometry and caspase activity assay. The expression level of GSH synthesis enzymes were measured using real-time RT-PCR.</p> <p>Results</p> <p>At concentrations that effectively inhibited proteasome activity, bortezomib induced apoptosis in FRO cells, but not in ARO cells. Bortezomib elevated the amount of glutathione (GSH) and the treatment with bortezomib increased the level of mRNA for GCL, a rate-limiting enzyme in glutathione synthesis. Furthermore, depletion of GSH increases apoptosis induced by bortezomib, in contrast, repletion of GSH decreases bortezomib-mediated cell death.</p> <p>Conclusion</p> <p>GSH protects cells from proteasome inhibition-induced oxidative stress and glutathione-dependent redox system might play an important role in the sensitivity to proteasome inhibition-induced apoptosis.</p

    Dedifferentiation of Human Primary Thyrocytes into Multilineage Progenitor Cells without Gene Introduction

    Get PDF
    While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases
    • …
    corecore