11,398 research outputs found
Invariant expansion for the trigonal band structure of graphene
We present a symmetry analysis of the trigonal band structure in graphene,
elucidating the transformational properties of the underlying basis functions
and the crucial role of time-reversal invariance. Group theory is used to
derive an invariant expansion of the Hamiltonian for electron states near the K
points of the graphene Brillouin zone. Besides yielding the characteristic
k-linear dispersion and higher-order corrections to it, this approach enables
the systematic incorporation of all terms arising from external electric and
magnetic fields, strain, and spin-orbit coupling up to any desired order.
Several new contributions are found, in addition to reproducing results
obtained previously within tight-binding calculations. Physical ramifications
of these new terms are discussed.Comment: 10 pages, 1 figure; expanded version with more details and additional
result
Direct Measurement of Neutron-Star Recoil in the Oxygen-Rich Supernova Remnant Puppis A
A sequence of three Chandra X-ray Observatory High Resolution Camera images
taken over a span of five years reveals arc-second-scale displacement of RX
J0822-4300, the stellar remnant (presumably a neutron star) near the center of
the Puppis A supernova remnant. We measure its proper motion to be
0.165+/-0.025 arcsec/yr toward the west-southwest. At a distance of 2 kpc, this
corresponds to a transverse space velocity of ~1600 km/s. The space velocity is
consistent with the explosion center inferred from proper motions of the
oxygen-rich optical filaments, and confirms the idea that Puppis A resulted
from an asymmetric explosion accompanied by a kick that imparted roughly
3*10^49 ergs of kinetic energy (some 3 percent of the kinetic energy for a
typical supernova) to the stellar remnant. We discuss constraints on
core-collapse supernova models that have been proposed to explain neutron star
kick velocities
Giant anisotropy of Zeeman splitting of quantum confined acceptors in Si/Ge
Shallow acceptor levels in Si/Ge/Si quantum well heterostructures are
characterized by resonant tunneling spectroscopy in the presence of high
magnetic fields. In a perpendicular magnetic field we observe a linear Zeeman
splitting of the acceptor levels. In an in-plane field, on the other hand, the
Zeeman splitting is strongly suppressed. This anisotropic Zeeman splitting is
shown to be a consequence of the huge light hole-heavy hole splitting caused by
a large biaxial strain and a strong quantum confinement in the Ge quantum well.Comment: 5 figures, 4 page
Compact strain-sensitive flexible photonic crystals for sensors
A promising fabrication route to produce absorbing flexible photonic crystals is presented, which exploits self-assembly during the shear processing of multi-shelled polymer spheres. When absorbing material is incorporated in the interstitial space surrounding high-refractive-index spheres, a dramatic enhancement in the transmission edge on the short-wavelength side of the band gap is observed. This effect originates from the shifting optical field spatial distribution as the incident wavelength is tuned around the band gap, and results in a contrast up to 100 times better than similar but nonabsorbing photonic crystals. An order-of-magnitude improvement in strain sensitivity is shown, suggesting the use of these thin films in photonic sensors
Coherent optical transfer of Feshbach molecules to a lower vibrational state
Using the technique of stimulated Raman adiabatic passage (STIRAP) we have
coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply
bound vibrational quantum level. Our measurements indicate a high transfer
efficiency of up to 87%. As the molecules are held in an optical lattice with
not more than a single molecule per lattice site, inelastic collisions between
the molecules are suppressed and we observe long molecular lifetimes of about 1
s. Using STIRAP we have created quantum superpositions of the two molecular
states and tested their coherence interferometrically. These results represent
an important step towards Bose-Einstein condensation (BEC) of molecules in the
vibrational ground state.Comment: 4 pages, 5 figure
Tuning the scattering length with an optically induced Feshbach resonance
We demonstrate optical tuning of the scattering length in a Bose-Einstein
condensate as predicted by Fedichev {\em et al.} [Phys. Rev. Lett. {\bf 77},
2913 (1996)]. In our experiment atoms in a Rb condensate are exposed to
laser light which is tuned close to the transition frequency to an excited
molecular state. By controlling the power and detuning of the laser beam we can
change the atomic scattering length over a wide range. In view of laser-driven
atomic losses we use Bragg spectroscopy as a fast method to measure the
scattering length of the atoms.Comment: submitted to PRL, 5 pages, 5 figure
Anisotropic Fermi Contour of (001) GaAs Electrons in Parallel Magnetic Fields
We demonstrate a severe Fermi contour anisotropy induced by the application
of a parallel magnetic field to high-mobility electrons confined to a
30-nm-wide (001) GaAs quantum well. We study commensurability oscillations,
namely geometrical resonances of the electron orbits with a unidirectional,
surface-strain-induced, periodic potential modulation, to directly probe the
size of the Fermi contours along and perpendicular to the parallel field. Their
areas are obtained from the Shubnikov-de Haas oscillations. Our experimental
data agree semi-quantitatively with the results of parameter-free calculations
of the Fermi contours but there are significant discrepancies.Comment: 5 pages, 5 figure
Extrinsic Entwined with Intrinsic Spin Hall Effect in Disordered Mesoscopic Bars
We show that pure spin Hall current, flowing out of a four-terminal
phase-coherent two-dimensional electron gas (2DEG) within inversion asymmetric
semiconductor heterostructure, contains contributions from both the extrinsic
mechanisms (spin-orbit dependent scattering off impurities) and the intrinsic
ones (due to the Rashba coupling). While the extrinsic contribution vanishes in
the weakly and strongly disordered limits, and the intrinsic one dominates in
the quasiballistic limit, in the crossover transport regime the spin Hall
conductance, exhibiting sample-to-sample large fluctuations and sign change, is
not simply reducible to either of the two mechanisms, which can be relevant for
interpretation of experiments on dirty 2DEGs [V. Sih et al., Nature Phys. 1, 31
(2005)].Comment: 5 pages, 3 color EPS figure
- …