336 research outputs found
Gravitational Waves from the Merger of Binary Neutron Stars in a Fully General Relativistic Simulation
We performed 3D numerical simulations of the merger of equal-mass binary
neutron stars in full general relativity using a new large scale supercomputer.
We take the typical grid size as (505,505,253) for (x,y,z) and the maximum grid
size as (633,633,317). These grid numbers enable us to put the outer boundaries
of the computational domain near the local wave zone and hence to calculate
gravitational waveforms of good accuracy (within error) for the
first time. To model neutron stars, we adopt a -law equation of state
in the form , where P, , \varep and
are the pressure, rest mass density, specific internal energy, and adiabatic
constant. It is found that gravitational waves in the merger stage have
characteristic features that reflect the formed objects. In the case that a
massive, transient neutron star is formed, its quasi-periodic oscillations are
excited for a long duration, and this property is reflected clearly by the
quasi-periodic nature of waveforms and the energy luminosity. In the case of
black hole formation, the waveform and energy luminosity are likely damped
after a short merger stage. However, a quasi-periodic oscillation can still be
seen for a certain duration, because an oscillating transient massive object is
formed during the merger. This duration depends strongly on the initial
compactness of neutron stars and is reflected in the Fourier spectrum of
gravitational waves. To confirm our results and to calibrate the accuracy of
gravitational waveforms, we carried out a wide variety of test simulations,
changing the resolution and size of the computational domain.Comment: 40 pages; pubslihed in Prog. Theor. Phys. 107 (2002), 26
An approximate solver for Riemann and Riemann-like Ellipsoidal Configurations
We introduce a new technique for constructing three-dimensional (3D) models
of incompressible Riemann S-type ellipsoids and compressible triaxial
configurations that share the same velocity field as that of
Riemann S-type ellipsoids. Our incompressible models are exact steady-state
configurations; our compressible models represent approximate steady-state
equilibrium configurations. Models built from this method can be used to study
a variety of relevant astrophysical and geophysical problems.Comment: 25 pages, 10 figures, ApJ accepted, refereed versio
Evolution of equal mass binary bare quark stars in full general relativity: could a supramassive merger remnant experience prompt collapse?
We have evolved mergers of equal-mass binary quark stars, the total mass of which is close to the mass shedding limit of uniformly rotating configurations, in fully general relativistic hydrodynamic simulations, aimed at investigating the post-merger outcomes. In particular, we have identified the threshold mass for prompt black hole formation after the merger, by tracing the minimum lapse function as well as the amount of ejected material during the merger simulation. A semi-analytical investigation based on the angular momentum contained in the merger remnant is also performed to verify the results. For the equation of state considered in this work, the maximum mass of TOV solutions for which is 2.10 , the threshold mass is found between 3.05 and 3.10 . This result is consistent (with a quantitative error smaller than 1%) with the universal relation derived from the numerical results of symmetric binary neutron star mergers. Contrary to the neutron star case, the threshold mass is close to the mass shedding limit of uniformly rotating quark star. Consequently, we have found that binary quark stars with total mass corresponding to the long-lived supramassive remnant for neutron star case, could experience collapse to black hole within several times dynamical timescale, making quark stars as exceptions of the commonly accepted post-merger scenarios for binary neutron star mergers. We have suggested explanation for both the similarity and the difference, between quark stars and neutron stars
Gravitational Wavetrains in the Quasi-Equilibrium Approximation: A Model Problem in Scalar Gravitation
A quasi-equilibrium (QE) computational scheme was recently developed in
general relativity to calculate the complete gravitational wavetrain emitted
during the inspiral phase of compact binaries. The QE method exploits the fact
that the the gravitational radiation inspiral timescale is much longer than the
orbital period everywhere outside the ISCO. Here we demonstrate the validity
and advantages of the QE scheme by solving a model problem in relativistic
scalar gravitation theory. By adopting scalar gravitation, we are able to
numerically track without approximation the damping of a simple, quasi-periodic
radiating system (an oscillating spherical matter shell) to final equilibrium,
and then use the exact numerical results to calibrate the QE approximation
method. In particular, we calculate the emitted gravitational wavetrain three
different ways: by integrating the exact coupled dynamical field and matter
equations, by using the scalar-wave monopole approximation formula
(corresponding to the quadrupole formula in general relativity), and by
adopting the QE scheme. We find that the monopole formula works well for weak
field cases, but fails when the fields become even moderately strong. By
contrast, the QE scheme remains quite reliable for moderately strong fields,
and begins to breakdown only for ultra-strong fields. The QE scheme thus
provides a promising technique to construct the complete wavetrain from binary
inspiral outside the ISCO, where the gravitational fields are strong, but where
the computational resources required to follow the system for more than a few
orbits by direct numerical integration of the exact equations are prohibitive.Comment: 15 pages, 14 figure
Parametric analysis of flux creep-flow model by using genetic algorithm
The pinning parameters for numerical calculation based on the flux creep-flow model are determined by using genetic algorithm (GA), which has been applied to many practical determination for parameters. Several estimation functions which describe the distance between the experimental and calculated results by GA were proposed, and the difference between the results were calculated. It is found that the pinning parameters of the flux creep-flow model are successfully deduced by GA. The difference between the calculated and experimental results and the calculation time are found to be largely depended on the estimation functions.Proceedings of the 24th International Symposium on Superconductivity (ISS 2011), October 24-26, 2011, Tokyo, Japa
Regular networks of Luttinger liquids
We consider arrays of Luttinger liquids, where each node is described by a
unitary scattering matrix. In the limit of small electron-electron interaction,
we study the evolution of these scattering matrices as the high-energy single
particle states are gradually integrated out. Interestingly, we obtain the same
renormalization group equations as those derived by Lal, Rao, and Sen, for a
system composed of a single node coupled to several semi-infinite 1D wires. The
main difference between the single node geometry and a regular lattice is that
in the latter case, the single particle spectrum is organized into periodic
energy bands, so that the renormalization procedure has to stop when the last
totally occupied band has been eliminated. We therefore predict a strongly
renormalized Luttinger liquid behavior for generic filling factors, which
should exhibit power-law suppression of the conductivity at low temperatures
E_{F}/(k_{F}a) >
1. Some fully insulating ground-states are expected only for a discrete set of
integer filling factors for the electronic system. A detailed discussion of the
scattering matrix flow and its implication for the low energy band structure is
given on the example of a square lattice.Comment: 16 pages, 7 figure
Various features of quasiequilibrium sequences of binary neutron stars in general relativity
Quasiequilibrium sequences of binary neutron stars are numerically calculated
in the framework of the Isenberg-Wilson-Mathews (IWM) approximation of general
relativity. The results are presented for both rotation states of synchronized
spins and irrotational motion, the latter being considered as the realistic one
for binary neutron stars just prior to the merger. We assume a polytropic
equation of state and compute several evolutionary sequences of binary systems
composed of different-mass stars as well as identical-mass stars with adiabatic
indices gamma=2.5, 2.25, 2, and 1.8. From our results, we propose as a
conjecture that if the turning point of binding energy (and total angular
momentum) locating the innermost stable circular orbit (ISCO) is found in
Newtonian gravity for some value of the adiabatic index gamma_0, that of the
ADM mass (and total angular momentum) should exist in the IWM approximation of
general relativity for the same value of the adiabatic index.Comment: Text improved, some figures changed or deleted, new table, 38 pages,
31 figures, accepted for publication in Phys. Rev.
- …