1,915 research outputs found

    THREE TECHNIQUES OF SKI JUMP TAKE-OFF MODELED BY CHANGES OF JOINT ANGLE

    Get PDF
    INTRODUCTION: In ski jumping, take-off action is the most important factor for ascent force. Jumpers should aim for optimum movements of the joints, because reaction force is the result of the integrated kinetic parameters of each joint or segment. In our recent studies, three techniques of take-off action were classified by manner of joint power generation. However, such kinetic parameters are difficult to explain in coaching situations. It would be more useful for coaching to represent the three techniques of take-off action by joint angle rather than joint power. The purpose of this study is to establish visual models of ski jump take-off action of world class jumpers based on changes of joint angle which would be especially useful in coaching. METHOD: The take-off actions were analyzed from videos taken at Hakuba Intercontinental Cup summer competition at 1997. Camera speed was 240 frames per second. The data from the videos were collected by computer. An inverse kinematics solution was applied to analysis. Jump performance of four jumpers, who received first prize in the team competition of Nagano Olympic games, was analyzed. RESULTS: The maximum value of angular velocity in the thigh was observed at close to the take-off platform edge in all jumpers. Peak angular velocity in the thigh was larger than in the trunk segment. The action at the hip joint represented the characteristics of jumping techniques rather than the action at the knee joint. The technique was classified by three manners of angular velocity. The three types of jump action were represented simply as visual models. In the technique of Type-A, motion was observed with regular order in each joint. The angular velocity of the trunk stayed at 2 rad/sec until the thigh’s angular velocity’s appearance. Type-A can be defined simply as an action moving from hip to knee joint. In technique Type-B, the angular velocity in the thigh was 4 rad/sec, higher than in the trunk at the initial jump action, and after some delay, the value in the trunk raised up from a negative value. Action Type-B can be defined simply as moving from knee to hip joint. In the last technique, Type-C, both the trunk and thigh angular velocities increased synchronously. Both hip and knee joints were extended at the same time. Type-C can be defined simply as the technique of synchronous movement at the knee and hip joint. These motions classified by changes of joint angle were shown by three visual models from Type-A to C. CONCLUSION: Three types of jump action could be represented simply by joint angle as visual models. There are advantages and risks involving jump hieght and the amount of body area subjected to aerodynamic drag force associated with each technique

    Derivation of viscous Burgers equations from weakly asymmetric exclusion processes

    Full text link
    We consider weakly asymmetric exclusion processes whose initial density profile is a small perturbation of a constant. We show that in the diffusive time-scale, in all dimensions, the density defect evolves as the solution of a viscous Burgers equation

    Clinical course of focal choroidal excavation in Vogt-Koyanagi-Harada disease

    Get PDF
    We describe focal choroidal excavation (FCE) in a case of Vogt–Koyanagi–Harada (VKH) disease and compare the findings with different chorioretinal conditions. A 55-year-old man was diagnosed with VKH based on panuveitis and exudative retinal detachments. Spectral-domain optical coherence tomography demonstrated a dome-shaped protrusion with a nonconforming pattern at the fovea, which had been detected as a conforming pattern 1 year before the onset. The FCE pattern returned into a conforming pattern following corticosteroid therapy. These findings suggest that the natively existent FCE could be affected by pathophysiological changes of VKH as well as other chorioretinal conditions

    Magnetotransport properties of lithographically defined lateral Co/Ni80Fe20 wires

    No full text
    In this article we have investigated the magnetization reversal process of laterally defined coupled magnetic structures consisting of micron-sized sputtered Co and Ni80Fe20 wires lying side by side at temperatures ranging from 3 to 300 K. We have used a microfabrication technique to create an array of planar, laterally coupled magnetic wires made of two ferromagnetic materials. We observed two distinct peaks in the magnetoresistance (MR) curves corresponding to the magnetization reversals of Co and Ni80Fe20 wires. Below a critical temperature of 20 K we observed an asymmetric shift in the Ni80Fe20 peak position for both forward and reverse field sweeps due to the exchange coupling between the ferromagnetic (Ni80Fe20) and antiferromagnetic (Co–oxide at the interface of Co and Ni80Fe20 formed during fabrication) parts. The Co peaks gradually disappeared as the temperature was reduced. At low temperature we also observed that the Ni80Fe20 peaks in the MR loops are considerably shifted to larger fields corresponding to the increase in coercivity

    Supporting IP/LEO satellite networks by handover-independent IP mobility management

    Get PDF
    科研費報告書収録論文(課題番号:14380172・基盤研究(B)(2) ・H14~H15/研究代表者:根元, 義章/トラヒックパターンの時系列解析に基づく次世代広域不正アクセス自動追跡システム

    Frustrated minority spins in GeNi2O4

    Full text link
    Recently, two consecutive phase transitions were observed, upon cooling, in an antiferromagnetic spinel GeNi2_2O4_4 at TN1=12.1T_{N1}=12.1 K and TN2=11.4T_{N2}=11.4 K, respectively \cite{matsuno, crawford}. Using unpolarized and polarized elastic neutron scattering we show that the two transitions are due to the existence of frustrated minority spins in this compound. Upon cooling, at TN1T_{N1} the spins on the \kagome planes order ferromagnetically in the plane and antiferromagnetically between the planes (phase I), leaving the spins on the triangular planes that separate the \kagome planes frustrated and disordered. At the lower TN2T_{N2}, the triangular spins also order in the plane (phase II). We also present a scenario involving exchange interactions that qualitatively explains the origin of the two purely magnetic phase transitions

    Enhanced Characterization of Drug Metabolism and the Influence of the Intestinal Microbiome: A Pharmacokinetic, Microbiome, and Untargeted Metabolomics Study.

    Get PDF
    Determining factors that contribute to interindividual and intra-individual variability in pharmacokinetics (PKs) and drug metabolism is essential for the optimal use of drugs in humans. Intestinal microbes are important contributors to variability; however, such gut microbe-drug interactions and the clinical significance of these interactions are still being elucidated. Traditional PKs can be complemented by untargeted mass spectrometry coupled with molecular networking to study the intricacies of drug metabolism. To show the utility of molecular networking on metabolism we investigated the impact of a 7-day course of cefprozil on cytochrome P450 (CYP) activity using a modified Cooperstown cocktail and assessed plasma, urine, and fecal data by targeted and untargeted metabolomics and molecular networking in healthy volunteers. This prospective study revealed that cefprozil decreased the activities of CYP1A2, CYP2C19, and CYP3A, decreased alpha diversity and increased interindividual microbiome variability. We further demonstrate a relationship between the loss of microbiome alpha diversity caused by cefprozil and increased drug and metabolite formation in fecal samples. Untargeted metabolomics/molecular networking revealed several omeprazole metabolites that we hypothesize may be metabolized by both CYP2C19 and bacteria from the gut microbiome. Our observations are consistent with the hypothesis that factors that perturb the gut microbiome, such as antibiotics, alter drug metabolism and ultimately drug efficacy and toxicity but that these effects are most strongly revealed on a per individual basis
    corecore