244 research outputs found

    Recoil effects of photoelectrons in a solid

    Full text link
    High energy resolution C 1ss photoelectron spectra of graphite were measured at the excitation energy of 340, 870, 5950 and 7940eV using synchrotron radiation. On increasing the excitation energy, i.e., increasing kinetic energy of the photoelectron, the bulk origin C 1ss peak position shifts to higher binding energies. This systematic shift is due to the kinetic energy loss of the high-energy photoelectron by kicking the atom, and is clear evidence of the recoil effect in photoelectron emission. It is also observed that the asymmetric broadening increases for the higher energy photoelectrons. All these recoil effects can be quantified in the same manner as the M\"ossbauer effect for γ\gamma-ray emission from nuclei embedded in crystals.Comment: 4 pages, 2 figure

    High efficiency and low absorption Fresnel compound zone plates for hard X-ray focusing

    Full text link
    Circular and linear zone plates have been fabricated on the surface of silicon crystals for the energy of 8 keV by electron beam lithography and deep ion plasma etching methods. Various variants of compound zone plates with first, second, third diffraction orders have been made. The zone relief height is about 10 mkm, the outermost zone width of the zone plate is 0.4 mkm. The experimental testing of the zone plates has been conducted on SPring-8 and ESRF synchrotron radiation sources. A focused spot size and diffraction efficiency measured by knife-edge scanning are accordingly 0.5 mkm and 39% for the first order circular zone plate.Comment: 5 pages, 7 figure

    Itinerant Ferromagnetism in layered crystals LaCoOX (X = P, As)

    Full text link
    The electronic and magnetic properties of cobalt-based layered oxypnictides, LaCoOX (X = P, As), are investigated. LaCoOP and LaCoOAs show metallic type conduction, and the Fermi edge is observed by hard x-ray photoelectron spectroscopy. Ferromagnetic transitions occur at 43 K for LaCoOP and 66 K for LaCoOAs. Above the transition temperatures, temperature dependence of the magnetic susceptibility follows the Curie-Weiss law. X-ray magnetic circular dichroism (XMCD) is observed at the Co L2,3-edge, but not at the other edges. The calculated electronic structure shows a spin polarized ground state. These results indicate that LaCoOX are itinerant ferromagnets and suggest that their magnetic properties are governed by spin fluctuation.Comment: 16 pages, 9 figures, Physical Review B, in press. Received 17 February 2008. Accepted 29 May 200

    Bulk screening in core level photoemission from Mott-Hubbard and Charge-Transfer systems

    Full text link
    We report bulk-sensitive hard X-ray (hνh\nu = 5.95 KeV) core level photoemission spectroscopy (PES) of single crystal V1.98_{1.98}Cr0.02_{0.02}O3_{3} and the high-TcT_c cuprate Bi2_2Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} (Bi2212). V1.98_{1.98}Cr0.02_{0.02}O3_{3} exhibits low binding energy "satellites" to the V 2p2p "main lines" in the metallic phase, which are suppressed in the antiferromagnetic insulator phase. In contrast, the Cu 2p2p spectra of Bi2212 do not show temperature dependent features, but a comparison with soft X-ray PES indicates a large increase in the 2p53d92p^5 3d^9 "satellites" or 3d93d^9 weight in the bulk. Cluster model calculations, including full multiplet structure and a screening channel derived from the coherent band at the Fermi energy, give very satisfactory agreement with experiments

    Photoemission evidence for a Mott-Hubbard metal-insulator transition in VO2_2

    Full text link
    The temperature (TT) dependent metal-insulator transition (MIT) in VO2_2 is investigated using bulk sensitive hard x-ray (\sim 8 keV) valence band, core level, and V 2p3dp-3d resonant photoemission spectroscopy (PES). The valence band and core level spectra are compared with full-multiplet cluster model calculations including a coherent screening channel. Across the MIT, V 3dd spectral weight transfer from the coherent (d1Cd^1\underbar{\it {C}} final) states at Fermi level to the incoherent (d0+d1Ld^{0}+d^1\underbar{\it {L}} final) states, corresponding to the lower Hubbard band, lead to gap-formation. The spectral shape changes in V 1ss and V 2pp core levels as well as the valence band are nicely reproduced from a cluster model calculations, providing electronic structure parameters. Resonant-PES finds that the d1Ld^1\underbar{\it{L}} states resonate across the V 2p3dp-3d threshold in addition to the d0d^{0} and d1Cd^1\underbar{\it {C}} states. The results support a Mott-Hubbard transition picture for the first order MIT in VO2_2.Comment: 6 pages, 3 figures. to be published in Phys. Rev.

    Evidence for suppressed metallicity on the surface of La2-xSrxCuO4 and Nd2-xCexCuO4

    Get PDF
    Hard X-ray Photoemission spectroscopy (PES) of copper core electronic states, with a probing depth of \sim60 \AA, is used to show that the Zhang-Rice singlet feature is present in La2_2CuO4_4 but is absent in Nd2_2CuO4_4. Hole- and electron doping in La2x_{2-x}Srx_xCuO4_4 (LSCO) and Nd2x_{2-x}Cex_xCuO4_4 (NCCO) result in new well-screened features which are missing in soft X-ray PES. Impurity Anderson model calculations establish metallic screening as its origin, which is strongly suppressed within 15 A˚\text{\AA} of the surface. Complemented with X-ray absorption spectroscopy, the small chemical-potential shift in core levels (0.2\sim0.2 eV) are shown to be consistent with modifications of valence and conduction band states spanning the band gap (1\sim1 eV) upon hole- and electron-doping in LSCO and NCCO.Comment: 4 pages, 4 figure
    corecore