989 research outputs found
Phase stability, ordering tendencies, and magnetism in single-phase fcc Au-Fe nanoalloys
Bulk Au-Fe alloys separate into Au-based fcc and Fe-based bcc phases, but
L1 and L1 orderings were reported in single-phase Au-Fe nanoparticles.
Motivated by these observations, we study the structural and ordering
energetics in this alloy by combining density functional theory (DFT)
calculations with effective Hamiltonian techniques: a cluster expansion with
structural filters, and the configuration-dependent lattice deformation model.
The phase separation tendency in Au-Fe persists even if the fcc-bcc
decomposition is suppressed. The relative stability of disordered bcc and fcc
phases observed in nanoparticles is reproduced, but the fully ordered L1
AuFe, L1 AuFe, and L1 AuFe structures are unstable in DFT.
However, a tendency to form concentration waves at the corresponding [001]
ordering vector is revealed in nearly-random alloys in a certain range of
concentrations. This incipient ordering requires enrichment by Fe relative to
the equiatomic composition, which may occur in the core of a nanoparticle due
to the segregation of Au to the surface. Effects of magnetism on the chemical
ordering are also discussed.Comment: 23 pages, 11 figure
Influence of the heterointerface sharpness on exciton recombination dynamics in an ensemble of (In,Al)As/AlAs quantum dots with indirect band-gap
The dynamics of exciton recombination in an ensemble of indirect band-gap
(In,Al)As/AlAs quantum dots with type-I band alignment is studied. The lifetime
of confined excitons which are indirect in momentum-space is mainly influenced
by the sharpness of the heterointerface between the (In,Al)As quantum dot and
the AlAs barrier matrix. Time-resolved photoluminescence experiments and
theoretical model calculations reveal a strong dependence of the exciton
lifetime on the thickness of the interface diffusion layer. The lifetime of
excitons with a particular optical transition energy varies because this energy
is obtained for quantum dots differing in size, shape and composition. The
different exciton lifetimes, which result in photoluminescence with
non-exponential decay obeying a power-law function, can be described by a
phenomenological distribution function, which allows one to explain the
photoluminescence decay with one fitting parameter only.Comment: 10 pages, 7 figure
Extra Spin-Wave mode in Quantum Hall systems. Beyond the Skyrmion Limit
We report on the observation of a new spin mode in a quantum Hall system in
the vicinity of odd electron filling factors under experimental conditions
excluding the possibility of Skyrmion excitations. The new mode having
presumably zero energy at odd filling factors emerges at small deviations from
odd filling factors and couples to the spin-exciton. The existence of an extra
spin mode assumes a nontrivial magnetic order at partial fillings of Landau
levels surrounding quantum Hall ferromagnets other then the Skyrmion crystal.Comment: 9 pages, 4 figure
Interplay of the exciton and electron-hole plasma recombination on the photoluminescence dynamics in bulk GaAs
We present a systematic study of the exciton/electron-hole plasma
photoluminescence dynamics in bulk GaAs for various lattice temperatures and
excitation densities. The competition between the exciton and electron-hole
pair recombination dominates the onset of the luminescence. We show that the
metal-to-insulator transition, induced by temperature and/or excitation
density, can be directly monitored by the carrier dynamics and the
time-resolved spectral characteristics of the light emission. The dependence on
carrier density of the photoluminescence rise time is strongly modified around
a lattice temperature of 49 K, corresponding to the exciton binding energy (4.2
meV). In a similar way, the rise-time dependence on lattice temperature
undergoes a relatively abrupt change at an excitation density of 120-180x10^15
cm^-3, which is about five times greater than the calculated Mott density in
GaAs taking into account many body corrections.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
Diffusion and Deformations in Heterosystems with GaN/AlN Superlattices, According to Data from EXAFS Spectroscopy
Multilayered samples with extremely narrow GaN
quantum wells in an AlN host are synthesized
via ammonia MBE. The parameters of the microstructu
re are determined by means of EXAFS spectroscopy,
high-resolution electron microscopy, and low-angle sc
attering. Their relationship to the morphology of
GaN/AlN superlattices is established. The influence of
growth conditions and the thickness of superlattices
on their optical properties and mixing in the near-boundary layers is established
Ferroelectric Dead Layer Driven by a Polar Interface
Based on first-principles and model calculations we investigate the effect of
polar interfaces on the ferroelectric stability of thin-film ferroelectrics. As
a representative model, we consider a TiO2-terminated BaTiO3 film with LaO
monolayers at the two interfaces that serve as doping layers. We find that the
polar interfaces create an intrinsic electric field that is screened by the
electron charge leaking into the BaTiO3 layer. The amount of the leaking charge
is controlled by the boundary conditions which are different for three
heterostructures considered, namely Vacuum/LaO/BaTiO3/LaO, LaO/BaTiO3, and
SrRuO3/LaO/BaTiO3/LaO. The intrinsic electric field forces ionic displacements
in BaTiO3 to produce the electric polarization directed into the interior of
the BaTiO3 layer. This creates a ferroelectric dead layer near the interfaces
that is non-switchable and thus detrimental to ferroelectricity. Our
first-principles and model calculations demonstrate that the effect is stronger
for a larger effective ionic charge at the interface and longer screening
length due to a stronger intrinsic electric field that penetrates deeper into
the ferroelectric. The predicted mechanism for a ferroelectric dead layer at
the interface controls the critical thickness for ferroelectricity in systems
with polar interfaces.Comment: 33 Pages, 5 figure
Nonperturbative Scaling Theory of Free Magnetic Moment Phases in Disordered Metals
The crossover between a free magnetic moment phase and a Kondo phase in low
dimensional disordered metals with dilute magnetic impurities is studied.
We perform a finite size scaling analysis of the distribution of the Kondo
temperature as obtained from a numerical renormalization group calculation of
the local magnetic susceptibility and from the solution of the self-consistent
Nagaoka-Suhl equation. We find a sizable fraction of free (unscreened) magnetic
moments when the exchange coupling falls below a disorder-dependent critical
value . Our numerical results show that between the free moment
phase due to Anderson localization and the Kondo screened phase there is a
phase where free moments occur due to the appearance of random local pseudogaps
at the Fermi energy whose width and power scale with the elastic scattering
rate .Comment: 4 pages, 6 figure
Anomalous behaviors of the charge and spin degrees of freedom in the CuO double chains of PrBaCuO
The density-matrix renormalization-group method is used to study the
electronic states of a two-chain Hubbard model for CuO double chains of
PrBaCuO. We show that the model at quarter filling has the charge
ordered phases with stripe-type and in-line--type patterns in the parameter
space, and in-between, there appears a wide region of vanishing charge gap; the
latter phase is characteristic of either Tomonaga-Luttinger liquid or a
metallic state with a spin gap. We argue that the low-energy electronic state
of the CuO double chains of PrBaCuO should be in the metallic state
with a possibly small spin gap.Comment: REVTEX 4, 10 pages, 9 figures; submitted to PR
Influence of Trapping on the Exciton Dynamics of Al_xGa_1-xAs Films
We present a systematic study on the exciton relaxation in high purity AlGaAs
epilayers. The time for the excitonic photoluminescence to reach its maximum
intensity (t_max) shows a non-monotonic dependence on excitation density which
is attributed to a competition between exciton localization and carrier-carrier
scattering. A phenomenological four level model fully describes the influence
of exciton localization on t_max. This localization effect is enhanced by the
increase of the Al content in the alloy and disappears when localization is
hindered by rising the lattice temperature above the exciton trapping energy.Comment: 4 pages, 3 figures, 16 ref
- …