46,023 research outputs found

    The New South Wales iVote System: Security Failures and Verification Flaws in a Live Online Election

    Full text link
    In the world's largest-ever deployment of online voting, the iVote Internet voting system was trusted for the return of 280,000 ballots in the 2015 state election in New South Wales, Australia. During the election, we performed an independent security analysis of parts of the live iVote system and uncovered severe vulnerabilities that could be leveraged to manipulate votes, violate ballot privacy, and subvert the verification mechanism. These vulnerabilities do not seem to have been detected by the election authorities before we disclosed them, despite a pre-election security review and despite the system having run in a live state election for five days. One vulnerability, the result of including analytics software from an insecure external server, exposed some votes to complete compromise of privacy and integrity. At least one parliamentary seat was decided by a margin much smaller than the number of votes taken while the system was vulnerable. We also found protocol flaws, including vote verification that was itself susceptible to manipulation. This incident underscores the difficulty of conducting secure elections online and carries lessons for voters, election officials, and the e-voting research community

    Testing quantum nonlocality by generalized quasiprobability functions

    Full text link
    We derive a Bell inequality based on a generalized quasiprobability function which is parameterized by one non-positive real value. Two types of known Bell inequalities formulated in terms of the Wigner and Q functions are included as limiting cases. We investigate violations of our Bell inequalities for single photon entangled states and two-mode squeezed vacuum states when varying the detector efficiency. We show that the Bell inequality for the Q function allows the lowest detection efficiency for violations of local realism.Comment: 6 pages, 3 figure

    Entanglement Detection by Local Orthogonal Observables

    Full text link
    We propose a family of entanglement witnesses and corresponding positive maps that are not completely positive based on local orthogonal observables. As applications the entanglement witness of the 3×33\times 3 bound entangled state [P. Horodecki, Phys. Lett. A {\bf 232}, 333 (1997)] is explicitly constructed and a family of dd-dimensional bound entangled states is designed so that the entanglement can be detected by permuting local orthogonal observables. Further the proposed physically not implementable positive maps can be physically realized by measuring a Hermitian correlation matrix of local orthogonal observables.Comment: 4 pages, 1 figur

    A simultaneous generalization of independence and disjointness in boolean algebras

    Full text link
    We give a definition of some classes of boolean algebras generalizing free boolean algebras; they satisfy a universal property that certain functions extend to homomorphisms. We give a combinatorial property of generating sets of these algebras, which we call n-independent. The properties of these classes (n-free and omega-free boolean algebras) are investigated. These include connections to hypergraph theory and cardinal invariants on these algebras. Related cardinal functions, nnInd, which is the supremum of the cardinalities of n-independent subsets; i_n, the minimum size of a maximal n-independent subset; and i_omega, the minimum size of an omega-independent subset, are introduced and investigated. The values of i_n and i_omega on P(omega)/fin are shown to be independent of ZFC.Comment: Sumbitted to Orde

    Fundamental Speed Limits on Quantum Coherence and Correlation Decay

    Full text link
    The study and control of coherence in quantum systems is one of the most exciting recent developments in physics. Quantum coherence plays a crucial role in emerging quantum technologies as well as fundamental experiments. A major obstacle to the utilization of quantum effects is decoherence, primarily in the form of dephasing that destroys quantum coherence, and leads to effective classical behaviour. We show that there are universal relationships governing dephasing, which constrain the relative rates at which quantum correlations can disappear. These effectively lead to speed limits which become especially important in multi-partite systems

    Construction of optimal witness for unknown two-qubit entanglement

    Full text link
    Whether entanglement in a state can be detected, distilled, and quantified without full state reconstruction is a fundamental open problem. We demonstrate a new scheme encompassing these three tasks for arbitrary two-qubit entanglement, by constructing the optimal entanglement witness for polarization-entangled mixed-state photon pairs without full state reconstruction. With better efficiency than quantum state tomography, the entanglement is maximally distilled by newly developed tunable polarization filters, and quantified by the expectation value of the witness, which equals the concurrence. This scheme is extendible to multiqubit Greenberger-Horne-Zeilinger entanglement.Comment: Phys. Rev. Lett. 105, 230404 (2010); supplementary information (OWitness_sup.pdf) is included in source zip fil

    Quantum Preferred Frame: Does It Really Exist?

    Full text link
    The idea of the preferred frame as a remedy for difficulties of the relativistic quantum mechanics in description of the non-local quantum phenomena was undertaken by such physicists as J. S. Bell and D. Bohm. The possibility of the existence of preferred frame was also seriously treated by P. A. M. Dirac. In this paper, we propose an Einstein-Podolsky-Rosen-type experiment for testing the possible existence of a quantum preferred frame. Our analysis suggests that to verify whether a preferred frame of reference in the quantum world exists it is enough to perform an EPR type experiment with pair of observers staying in the same inertial frame and with use of the massive EPR pair of spin one-half or spin one particles.Comment: 5 pp., 6 fig

    Detection of genuinely entangled and non-separable nn-partite quantum states

    Full text link
    We investigate the detection of entanglement in nn-partite quantum states. We obtain practical separability criteria to identify genuinely entangled and non-separable mixed quantum states. No numerical optimization or eigenvalue evaluation is needed, and our criteria can be evaluated by simple computations involving components of the density matrix. We provide examples in which our criteria perform better than all known separability criteria. Specifically, we are able to detect genuine nn-partite entanglement which has previously not been identified. In addition, our criteria can be used in today's experiment.Comment: 8 pages, one figur

    Nonlocality without inequality for spin-s system

    Full text link
    We analyze Hardy's non-locality argument for two spin-s systems and show that earlier solution in this regard was restricted due to imposition of some conditions which have no role in the argument of non-locality. We provide a compact form of non-locality condition for two spin-s systems and extend it to n number of spin-s particles. We also apply more general kind of non-locality argument still without inequality, to higher spin system.Comment: 6 page

    Improving Small Object Proposals for Company Logo Detection

    Get PDF
    Many modern approaches for object detection are two-staged pipelines. The first stage identifies regions of interest which are then classified in the second stage. Faster R-CNN is such an approach for object detection which combines both stages into a single pipeline. In this paper we apply Faster R-CNN to the task of company logo detection. Motivated by its weak performance on small object instances, we examine in detail both the proposal and the classification stage with respect to a wide range of object sizes. We investigate the influence of feature map resolution on the performance of those stages. Based on theoretical considerations, we introduce an improved scheme for generating anchor proposals and propose a modification to Faster R-CNN which leverages higher-resolution feature maps for small objects. We evaluate our approach on the FlickrLogos dataset improving the RPN performance from 0.52 to 0.71 (MABO) and the detection performance from 0.52 to 0.67 (mAP).Comment: 8 Pages, ICMR 201
    corecore