20,337 research outputs found
Dynamics of Vortex Core Switching in Ferromagnetic Nanodisks
Dynamics of magnetic vortex core switching in nanometer-scale permalloy disk,
having a single vortex ground state, was investigated by micromagnetic
modeling. When an in-plane magnetic field pulse with an appropriate strength
and duration is applied to the vortex structure, additional two vortices, i.e.,
a circular- and an anti-vortex, are created near the original vortex core.
Sequentially, the vortex-antivortex pair annihilates. A spin wave is created at
the annihilation point and propagated through the entire element; the relaxed
state for the system is the single vortex state with a switched vortex core.Comment: to appear in Appl. Phys. Let
Dressed Polyakov loop and flavor dependent phase transitions
The chiral condensate and dressed Polyakov loop at finite temperature and
density have been investigated in the framework of Nf = 2+1 Nambu-Jona-Lasinio
(NJL) model with two degenerate u, d quarks and one strange quark. In the case
of explicit chiral symmetry breaking with physical quark masses, it is found
that the phase transitions for light u, d quarks and s quark are sequentially
happened, and the separation between the transition lines for different flavors
becomes wider and wider with the increase of baryon density. For each flavor,
the pseudo-critical temperatures for chiral condensate and dressed Polyakov
loop differ in a narrow transition range in the lower baryon density region,
and the two transitions coincide in the higher baryon density region.Comment: 9 pages, 9 figures; Version accepted in Phys. Rev.
Single Top Quark Production and Decay at Next-to-leading Order in Hadron Collision
We present a calculation of the next-to-leading order QCD corrections, with
one-scale phase space slicing method, to single top quark production and decay
process at hadron colliders.
Using the helicity amplitude method, the angular correlation of the final state
partons and the spin correlation of the top quark are preserved. The effect of
the top quark width is also examined.Comment: 47 pages, 9 figure
Four dual AGN candidates observed with the VLBA
According to hierarchical structure formation models, merging galaxies are
expected to be seen in different stages of their coalescence. However,
currently there are no straightforward observational methods neither to select
nor to confirm a large number of dual active galactic nuclei (AGN) candidates.
Most attempts involve the better understanding of double-peaked narrow emission
line sources, to distinguish the objects where the emission lines originate
from narrow-line kinematics or jet-driven outflows from those which might
harbour dual AGN. We observed four such candidate sources with the Very Long
Baseline Array (VLBA) at 1.5 GHz with 10 milli-arcsecond angular
resolution where spectral profiles of AGN optical emission suggested the
existence of dual AGN. In SDSS J210449.13-000919.1 and SDSS J23044.82-093345.3,
the radio structures are aligned with the optical emission features, thus the
double-peaked emission lines might be the results of jet-driven outflows. In
the third detected source SDSS J115523.74+150756.9, the radio structure is less
extended and oriented nearly perpendicular to the position angle derived from
optical spectroscopy. The fourth source remained undetected with the VLBA but
it has been imaged with the Very Large Array at arcsec resolution a few months
before our observations, suggesting the existence of extended radio structure.
In none of the four sources did we detect two radio-emitting cores, a
convincing signature of duality.Comment: 35 pages, 3 figures, 2 tables, accepted for publication in Ap
Limits from Weak Gravity Conjecture on Dark Energy Models
The weak gravity conjecture has been proposed as a criterion to distinguish
the landscape from the swampland in string theory. As an application in
cosmology of this conjecture, we use it to impose theoretical constraint on
parameters of two types of dark energy models. Our analysis indicates that the
Chaplygin-gas-type models realized in quintessence field are in the swampland,
whereas the power-low decay model of the variable cosmological constant can
be viable but the parameters are tightly constrained by the conjecture.Comment: Revtex4, 8 pages, 5 figures; References, minor corrections in
content, and acknowledgement adde
Application of synchronous compensators in the GB transmission network to address protection challenges from increasing renewable generation
The GB transmission network is experiencing significant changes in its generation mix, with increasing volume of renewables and the decommissioning of large-scale thermal power plants. One of the main challenges resulting from these changes in the generation portfolio is the potential impact on the reliable operation of the existing protection schemes. Specifically, the likely decrease in the fault level may result in conventional protection schemes being slow/failing in detection faults, and the decrease of the system inertia would lead to a power system being more sensitive to disturbances, which may subsequently lead to undesired operation of Rate of Change of Frequency (RoCoF) – based Loss-of-Main (LOM) relays. Synchronous compensators are considered to have the potential to offer, among other benefits, a boost to system inertia and an increase of system fault level, which could facilitate the operation of protection systems in future energy scenarios. This paper presents the initial studies conducted under a project that has been initiated by a number of utility companies in the UK, focusing on the demonstration and deployment of the first synchronous compensator at a strategic point in the GB transmission system. The studies investigate the potential impacts of a GB transmission system with high penetration of non-synchronous generation on fault levels and system inertia, while contrasting the results with that of a system reinforced by synchronous compensation. The results of the inertia studies show that synchronous compensation could be used as a potential solution to limit system RoCoF following a disturbance, thereby reducing the risk of a cascading event as a result of the tripping of RoCoF relays. In the fault level studies, it was observed that while increasing the synchronous compensator rating, fault current and short circuit ratio increased, with a faster rate of increase the closer the synchronous compensator is to the fault. This observation suggests that synchronous compensators can also be used to minimise the risk of commutation failure of HVDC links, with the added likelihood of ensuring that the network protection operates correctly in low fault level scenarios
New Terms for the Compact Form of Electroweak Chiral Lagrangian
The compact form of the electroweak chiral Lagrangian is a reformulation of
its original form and is expressed in terms of chiral rotated electroweak gauge
fields, which is crucial for relating the information of underlying theories to
the coefficients of the low-energy effective Lagrangian. However the compact
form obtained in previous works is not complete. In this letter we add several
new chiral invariant terms to it and discuss the contributions of these terms
to the original electroweak chiral Lagrangian.Comment: 3 pages, references adde
From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality
By means of Dirac procedure, we re-examine Yang's quantized space-time model,
its relation to Snyder's model, the de Sitter special relativity and their
UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a
complete Yang model at both classical and quantum level can be presented and
there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge
- …