567 research outputs found
Recommended from our members
Pathway to publication : the written word in Tunisia
This thesis examines the current state of the publishing industry in Tunisia in order to understand the nature of writing and publishing in an international context. In discovering the publishing procedure, I have included information on how books are used in education, homes, and libraries as well as the roles of newspapers, government, and booksellers. All these aspects help determine the driving forces behind any publishing industry such as, supply, demand, cultural attitudes, and accessibility of knowledge. My research was conducted primarily using standard library research procedures, which were then anchored by several interviews with professionals involved with publishing in Tunisia.
This study presents an overview of publishing techniques and factors contributing to problems and/or successes within the industry. After considering these factors, I assert that publishers provide inadequate financial support to authors as a result of plummeting public demand for printed literary works. Additionally, increasing government interference through direct and indirect censorship of both the content and availability of books significantly hinders the growth of the industry and the cultural diversity of written works produced and sold within Tunisia
Recommended from our members
Investigation of Tunable Diode Spectroscopy for Monitoring Gases in Geothermal Plants
The results of an investigation directed at the development of instrument-tation for the real-time monitoring of gases, such as hydrogen sulfide (H2S) and chloride (HCl), in geothermal process streams is described. The geothermal power industry has an interest in the development of new low maintenance techniques since improved capabilities could lead to considerable cost savings through the optimization of various gas abatement processes. Tunable diode laser spectroscopy was identified as a candidate tech-nology for this application and a commercial instrument was specified and procured for testing. The measurement principle involved the use of solid state diode lasers and frequency modulation techniques. The gallium arsenide diode lasers employed emit light in the 0.7 to 2.0 micron region of the electromagnetic spectrum. This region contains the overtone and combination absorption bands of a number of species of industrial interest, including H2S and HCl. A particular device can be tuned over a small range to match the absorption line by changing its applied temperature and current. The diode current can also be sinusoidally modulated in frequency as it is tuned across the line. This modulation allows measurements to be conducted at frequencies where the laser intensity noise is minimal; and therefore, very high signal-to-noise measurements are possible. The feasibility of using this technology in various types of geothermal process streams has been explored. The results of laboratory and field studies are presented along with new advances in laser technology that could allow more sensitive and selective measurements to be performed
Recommended from our members
Development of Optical Technologies for Monitoring Moisture and Particulate in Geothermal Steam
The results of an investigation directed at evaluating the feasibility of using optical measurements for the real-time monitoring moisture and particulate in geothermal steam is described. The measurements exploit new technologies that have been developed for the telecommunications industry and includes new solid state laser devices, large-bandwidth, high-sensitivity detectors and low loss optical fiber compo-nents. In particular, the design, fabrication, and in-plant testing of an optical steam monitor for the detection of moisture is presented. The measurement principle is based upon the selective absorption of infrared energy in response to the presence of moisture. Typically, two wavelengths are used in the measurements: a wavelength that is strongly absorbed by water and a reference wavelength that is minimally influenced by water and steam which serves as a reference to correct for particulate or droplet scattering. The two wavelengths are chosen to be as close as possible in order to more effectively correct for scattering effects. The basic instrumentation platform developed for the in-situ monitoring of steam moisture can be modified and used to perform other measurements of interest to plant operators. An upgrade that will allow the instrument to be used for the sensitive detection of particulate in process streams has been investigated. The new monitor design involves the use of laser diodes that are much less sensitive to water and water vapor and more sensitive to scattering phenomena, as well as new processing techniques to recover these signals. The design reduces the averaging time and sampling volume, while increasing the laser probe power, enhancing particulate detection sensitivity. The design concept and initial laboratory experiments with this system are also reported
Persistent Decadal-Scale Rainfall Variability in the Tropical South Pacific Convergence Zone Through the Past Six Centuries
Modern Pacific decadal variability (PDV) has global impacts; hence records of PDV from the pre-instrumental period are needed to better inform models that are used to project future climate variability. We focus here on reconstructing rainfall in the western tropical Pacific (Solomon Islands; similar to 9.5 degrees S, similar to 160 degrees E), a region directly influenced by PDV, using cave deposits (stalagmite). A relationship is developed between delta O-18 variations in the stalagmite and local rainfall amount to produce a 600 yr record of rainfall variability from the South Pacific Convergence Zone (SPCZ). We present evidence for large (similar to 1.5 m), abrupt, and periodic changes in total annual rainfall amount on decadal to multidecadal timescales since 1423 +/- 5 CE (Common Era) in the Solomon Islands. The timing of the decadal changes in rainfall inferred from the 20th-century portion of the stalagmite delta O-18 record coincides with previously identified decadal shifts in PDV-related Pacific ocean-atmosphere behavior (Clement et al., 2011; Deser et al., 2004). The Solomons record of PDV is not associated with variations in external forcings, but rather results from internal climate variability. The 600 yr Solomon Islands stalagmite delta O-18 record indicates that decadal oscillations in rainfall are a persistent characteristic of SPCZ-related climate variability.Taiwan ROC NSCNTU 101-2116-M-002-009, 102-2116-M-002-016, 101R7625Geological Science
Domain Wall Resistance in Perpendicular (Ga,Mn)As: dependence on pinning
We have investigated the domain wall resistance for two types of domain walls
in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive
intrinsic DWR is inferred for domain walls that are pinned at an etching step,
which is quite consistent with earlier observations. However, much lower
intrinsic domain wall resistance is obtained when domain walls are formed by
pinning lines in unetched material. This indicates that the spin transport
across a domain wall is strongly influenced by the nature of the pinning.Comment: 9 pages, 3 figure
Recommended from our members
Imaging system (INEL)
This progress report gives a brief description of the general automatic target recognition system algorithms developed for this project, and also summarizes the progress in fiscal 1991. An appendix discusses the proposed computer hardware for this system
Growth and properties of ferromagnetic In(1-x)Mn(x)Sb alloys
We discuss a new narrow-gap ferromagnetic (FM) semiconductor alloy,
In(1-x)Mn(x)Sb, and its growth by low-temperature molecular-beam epitaxy. The
magnetic properties were investigated by direct magnetization measurements,
electrical transport, magnetic circular dichroism, and the magneto-optical Kerr
effect. These data clearly indicate that In(1-x)Mn(x)Sb possesses all the
attributes of a system with carrier-mediated FM interactions, including
well-defined hysteresis loops, a cusp in the temperature dependence of the
resistivity, strong negative magnetoresistance, and a large anomalous Hall
effect. The Curie temperatures in samples investigated thus far range up to 8.5
K, which are consistent with a mean-field-theory simulation of the
carrier-induced ferromagnetism based on the 8-band effective band-orbital
method.Comment: Invited talk at 11th International Conference on Narrow Gap
Semiconductors, Buffalo, New York, U.S.A., June 16 - 20, 200
Tight-binding study of interface states in semiconductor heterojunctions
Localized interface states in abrupt semiconductor heterojunctions are
studied within a tight-binding model. The intention is to provide a microscopic
foundation for the results of similar studies which were based upon the
two-band model within the envelope function approximation. In a two-dimensional
description, the tight-binding Hamiltonian is constructed such that the
Dirac-like bulk spectrum of the two-band model is recovered in the continuum
limit. Localized states in heterojunctions are shown to occur under conditions
equivalent to those of the two-band model. In particular, shallow interface
states are identified in non-inverted junctions with intersecting bulk
dispersion curves. As a specific example, the GaSb-AlSb heterojunction is
considered. The matching conditions of the envelope function approximation are
analyzed within the tight-binding description.Comment: RevTeX, 11 pages, 3 figures, to appear in Phys. Rev.
Prediction of Anisotropic Single-Dirac-Cones in BiSb Thin Films
The electronic band structures of BiSb thin films can be
varied as a function of temperature, pressure, stoichiometry, film thickness
and growth orientation. We here show how different anisotropic
single-Dirac-cones can be constructed in a BiSb thin film for
different applications or research purposes. For predicting anisotropic
single-Dirac-cones, we have developed an iterative-two-dimensional-two-band
model to get a consistent inverse-effective-mass-tensor and band-gap, which can
be used in a general two-dimensional system that has a non-parabolic dispersion
relation as in a BiSb thin film system
- …