27 research outputs found
Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia â Implications for the preservation of primary C isotope signals
This study was supported by Estonian Science Agency project PUT696 and PRG447, and Estonian Centre of Analytical Chemistry. K.P. and A.L. were supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259.The Paleoproterozoic Zaonega Formation in Karelia, NW Russia, has played a key role in understanding the environmental conditions postdating the Great Oxidation and Lomagundi-Jatuli Events. Its carbonate- and organic-rich rocks (shungite) define the postulated Shunga Event representing an accumulation of very organic-rich sediments at c. 2âŻGa and are central in ideas about changing ocean-atmosphere composition in the wake of those worldwide biogeochemical phenomena. Our work focussed on a key interval of carbonate rocks in the upper part of the Formation to: (i) obtain new high-resolution carbon, oxygen and strontium isotope data complemented by detailed petrography and mineralogical characterisation and (ii) expand upon previous studies by using our data to constrain geochemical modelling and show in greater detail how magmatic hydrothermal fluids induced dedolomitisation and altered geochemical signals. Our findings show that the δ13Ccarb of calcite-rich intervals are the most altered, with values between â16.9 to 0.6â°, whereas the dolomite-dominated parts retain the best-preserved (i.e. most original) values. Those define a trend of steadily increasing δ13Ccarb, from â6 to +0.5â°, which we interpret as a return to normal marine conditions and carbonateâcarbon values following the Lomagundi-Jatuli Event.PostprintPeer reviewe
Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event : the carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia
This study was supported by Estonian Research Council project PRG447, and the Estonian Centre of Analytical Chemistry. K.P. and A.L. were supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259. K.P. acknowledges the Estonian Research Council grant MOBJD542 and T.M. PUT611.The c. 2.0 Ga Zaonega Formation of the Onega Basin (NW Russia) has been central in efforts to understand what led to the initial rise (Great Oxidation Event, GOE) and postulated fall in free atmospheric oxygen and associated high-amplitude carbon cycle excursions, the Lomagundi-Jatuli Event (LJE) and subsequent Shunga Event during Paleoproterozoic time. The Formation accumulated shortly after the LJE and encompasses both the recovery in the carbon cycle and hypothesised contraction of the oceanic oxidant pool. However, interpreting the correct environmental context recorded by geochemical signatures in the Zaonega rocks is difficult due to a complex depositional and diagenetic history. In order to robustly constrain that history, we undertook a multiproxy study (mineralogy, petrography, carbon isotope and rare earth element composition) of carbonate beds in the upper part of the Zaonega Formation recovered in the 102-m composite section of the OnZap drill-cores. Our findings differentiate primary environmental signatures from secondary overprinting and show that: (i) the best-preserved carbonate beds define an upwards increasing δ13Ccarb trend from c. -5.4â° to near 0â°; and that (ii) large intra-bed δ13Ccarb variations reflect varying contributions of methanotrophic dissolved inorganic carbon (DIC) to the basinal DIC pool. Rare earth element and yttrium (REYSN) patterns confirm a marine origin of the carbonate beds whereas a consistent positive EuSN anomaly suggests a strong high temperature hydrothermal input during accumulation of the Zaonega Formation. Importantly, the presence of a negative CeSN anomaly in the REYSN pattern indicates an oxygenated atmosphere-ocean system shortly after the LJE and indicates that models invoking a fall in oxygen at that time require reassessment.PostprintPeer reviewe
On the Preparation of Some Tertiary Amines Containing the 2-Furfuryl Group. Isomerization of Allyl-aryl( 2-furfuryl)-amines to N-Aryl-4H-5, 7 a-epoxyisoindolines
Six new tertiary 2-furfurylamines of the general formula
2-C 4H 30 ¡ CH2 NRAr, w h ere R represents methyl, ethyl or ally!,
and Ar phenyl, p-tolyl or p-methoxyphenyl groups, have been prepared
by alkylation of the appropriate secondary aryl-(2-furfuryl)-
amines with alkyl or ally! halides.
It was found that the oily allyl-aryl-(2-furfuryl)-amines, on
standing at room temperature, spontaneously isomerized to crystalline
N-aryl-4H-5,7a-epoxyisoindolines, formed by a reversible intramolecular
Diels-Alder reaction
Recommended from our members
Two-billion-year-old evaporites capture Earth's great oxidation
Funding sources: Simons Foundation (SCOL 339006 to C.L.B.), European Research Council (ERC Horizon 2020 grant 678812 to M.C.), Research Council of Norway (RCN Centres of Excellence funding scheme project 223259 to K.P. and A.L.), Estonian Science Agency (PUT696 to K.K., A.L., K.P., T.K.).Major changes in atmospheric and ocean chemistry occurred in the Paleoproterozoic Era (2.5â1.6 billion years ago). Increasing oxidation dramatically changed Earthâs surface, but few quantitative constraints exist on this important transition. This study describes the sedimentology, mineralogy, and geochemistry of a remarkably preserved two-billion-year-old and ~800 meter-thick evaporite succession from the Onega Basin in Russian Karelia. The deposit consists of a basal unit dominated by halite (~100 m) followed by anhydrite-magnesite (~500 m) and dolomite-magnesite (~200 m) dominated units. The evaporite minerals robustly constraint marine sulfate concentrations to at least 10 millimoles per kilogram of water, representing an oxidant reservoir equivalent to over 20% of the modern ocean-atmosphere oxidizing capacity. These results show that substantial amounts of surface oxidant accumulated during this critical transition in Earthâs oxygenation.PostprintPeer reviewe
Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia â Implications for the preservation of primary C isotope signals
The Paleoproterozoic Zaonega Formation in Karelia, NW Russia, has played a key role in understanding the environmental conditions postdating the Great Oxidation and Lomagundi-Jatuli Events. Its carbonate- and organic-rich rocks (shungite) define the postulated Shunga Event representing an accumulation of very organic-rich sediments at c. 2âŻGa and are central in ideas about changing ocean-atmosphere composition in the wake of those worldwide biogeochemical phenomena. Our work focussed on a key interval of carbonate rocks in the upper part of the Formation to: (i) obtain new high-resolution carbon, oxygen and strontium isotope data complemented by detailed petrography and mineralogical characterisation and (ii) expand upon previous studies by using our data to constrain geochemical modelling and show in greater detail how magmatic hydrothermal fluids induced dedolomitisation and altered geochemical signals. Our findings show that the δ13Ccarb of calcite-rich intervals are the most altered, with values between â16.9 to 0.6â°, whereas the dolomite-dominated parts retain the best-preserved (i.e. most original) values. Those define a trend of steadily increasing δ13Ccarb, from â6 to +0.5â°, which we interpret as a return to normal marine conditions and carbonateâcarbon values following the Lomagundi-Jatuli Event
Barite mineralization in Kalana speleothems, Central Estonia: Sr, S and O isotope characterization
Barite mineralization in association with calcitic speleothem precipitates in cave structures in Silurian Aeronian carbonate rocks in Kalana quarry, Central Estonia, was studied. Barite mineralization in Kalana occurs in two generations â euhedral bladed-tabular barite zonal crystals from a few to 10 cm in size, growing on the limestone-dolomite wall-rock (generation I), and sparsely placed thin tabular crystals a few millimetres thick and up to 1 cm in size, growing on calcitic crusts (generation II). The barite crystals of generation I are frequently found embedded by paragenetically later calcitic botryoidal crusts. The Sr and S isotopic composition of barite crystals shows a trend of increasing Sr isotope ratios (from 0.7114 to 0.7120) and δ34S values (from 13â° to 33â°) from the central parts towards the edges of zonal crystals. This suggests barite precipitation by mixing of two endmember fluids at varying ratios during barite formation: warm (up to 70 °C) reducing fluid bearing Ba, characterized by an elevated radiogenic Sr- and 34S-enriched isotopic signal, and a cooler ambient fluid bearing an isotopically lighter dissolved sulphate, characterized by lower Sr isotope ratios. The excess of radiogenic 87Sr in barite compared to Phanerozoic seawater values suggests Sr derived from a continental source, whereas sulphate was derived either from oxidized H2S or a modified seawater source. Gradual increase in δ34S values towards the outer zones could also indicate the 34S enrichment due to bacterial sulphate reduction, even though there is no paired 34S and 18O enrichment of sulphate, characteristic of bacterial reworking. This can be interpreted as indicating an open system with limited sulphate resupply where the δ18O composition of sulphate was equilibrated with warm ascending hydrothermal fluid