112 research outputs found

    БИОЭКОНОМИКА – НОВАЯ ПЕРСПЕКТИВА РАЗВИТИЯ АГРАРНОГО СЕКТОРА И ПОПЫТКИ ЕЕ ВНЕДРЕНИЯ В ПОЛЬШЕ

    Get PDF
    The paper dwells on the concept, rationale and attempts to implement bioeconomics being a new direction in development of agricultural sector, which includes production of renewable biological resources, transformation of primary bioproducts and biowaste into products with added value. The essence of bioeconomics is supplying these needs with biological raw materials and primary products in closed cycle (considering the biowaste maximum use and processing). A key role in development of this new direction of national economy is played by agriculture. Really important challenge for modern civilization is bioeconomics oriented on balanced development by applying the latest techniques and technologies for using natural resources. According to these assumptions, the European Union, including Poland, has taken a number of decisions to create research basis and regulations for strategies creation that will guide the economy to the closed productive cycle path. An example of such actions could be the European Commission’s “European Strategy and Action Plan for a Balanced Bioeconomics till 2020” and BIOSTRATEGIAN research and production program implemented in Poland. In order to create basis for bioeconomics implementation into the agricultural sector, the Ministry of Agriculture and Regional Development established the project “New Strategies of the European Commission for Bioeconomics in a Closed Cycle” in 2016. Within the framework of this project, regional preferences estimation was developed and evaluated for development of this area in agricultural sector.В работе представлена концепция, обоснование и опыт внедрения биоэкономики, являющейся новым направлением в развитии аграрного сектора, который включает производство обновляемых биологических ресурсов, преобразование первичных биопродуктов, а также биоотходов в продукты с добавочной стоимостью. Сущностью биоэкономики является обеспечение этих потребностей биосырьем и первичными продуктами в замкнутом цикле (с учетом максимального использования и переработки биоотходов). Ключевую роль в развитии нового направления народного хозяйства играет сельское хозяйство. Важным вызовом для современной цивилизации является направление биоэкономики на сбалансированное развитие путем применения наиболее современных техник и технологий использования натуральных ресурсов. В соответствии с этими предпосылками страны Европейского союза, в том числе и Польша, приняли ряд решений для создания научных основ и постановлений для создания стратегий, направляющих экономику на путь замкнутого производительного цикла. Примером таких действий может быть коммюнике Европейской Комиссии «Европейская стратегия и план действий направленный на сбалансированную биоэкономику до 2020 года» и реализованная в Польше научно-практическая программа БИОСТРАТЕГ. Для создания основ внедрения биоэкономики в аграрном секторе Министерство сельского хозяйства и развития регионов в 2016 г. приняло проект «Новые стратегии Европейской Комиссии относительно биоэкономики в замкнутом цикле», в рамках которого разработана и проведена оценка региональных преференции для развития этого направления в аграрном секторе.

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    VDES J2325-5229 a z=2.7 gravitationally lensed quasar discovered using morphology independent supervised machine learning

    Get PDF
    We present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift zs\textit{zs} = 2.74 and image separation of 2.9 arcsec lensed by a foreground zl\textit{zl} = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi\textit{gi} multicolour photometric observations from the Dark Energy Survey (DES), near-IR JK\textit{JK} photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with iAB\textit{iAB} = 18.61 and iAB\textit{iAB} = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z\textit{z} = 2.739 ± 0.003 and a foreground early-type galaxy with z\textit{z} = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θE ∼ 1.47 arcsec, enclosed mass M\textit{M}enc ∼ 4 × 1011^{11}M\textit{M}⊙ and a time delay of ∼52 d. The relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.FO is supported jointly by CAPES (the Science without Borders programme) and the Cambridge Commonwealth Trust. RGM, CAL, MWA, MB, SLR acknowledge the support of UK Science and Technology Research Council (STFC). AJC acknowledges the support of a Raymond and Beverly Sackler visiting fellowship at the Institute of Astronomy. For further information regarding funding please visit the publisher's website

    DES J0454-4448: discovery of the first luminous z >= 6 quasar from the Dark Energy Survey

    Get PDF
    We present the first results of a survey for high-redshift, z >= 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the zAB, YAB = 20.2, 20.2 (M1450 = -26.5) quasar DES J0454-4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly alpha forest and an H I near zone size of 4.1_{-1.2}^{+1.1} proper Mpc. The quasar was selected as an i-band drop out with i-z = 2.46 and zAB 6 including 3-10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies

    The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign. II. New quasar lenses from double component fitting

    Get PDF
    We report upon the follow up of 34 candidate lensed quasars found in the Dark Energy Survey using NTT-EFOSC, Magellan-IMACS, KECK-ESI and SOAR-SAMI. These candidates were selected by a combination of double component fitting, morphological assessment and color analysis. Most systems followed up are indeed composed of at least one quasar image and 13 with two or more quasar images: two lenses, four projected binaries and seven Nearly Identical Quasar Pairs (NIQs). The two systems confirmed as genuine gravitationally lensed quasars are one quadruple at zs=1.713 and one double at zs=1.515. Lens modeling of these two systems reveals that both systems require very little contribution from the environment to reproduce the image configuration. Nevertheless, small flux anomalies can be observed in one of the images of the quad. Further observations of 9 inconclusive systems (including 7 NIQs) will allow to confirm (or not) their gravitational lens nature.T. A. acknowledges support by proyecto FONDECYT 11130630 and by the Ministry for the Economy, Development, and Tourism's Programa Inicativa Científica Milenio through grant IC 12009, awarded to The Millennium Institute of Astrophysics (MAS). T.T. and V.M. acknowledge support by the Packard Foundation through a Packard Research Fellowship to T.T. T.T. acknowledges support by the National Science Foundation through grant AST-1450141. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacâo Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministerio da Ciência, Tecnologia e Inovacâo, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES Brazil Consortium, the University of Edinburgh, the Eidgen össische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l'Espai (IEEC/CSIC), the Institut de Física d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig- Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortiu

    The STRong lensing insights into the dark energy survey (STRIDES) 2016 follow-up campaign - II. new quasar lenses from double component fitting

    Get PDF
    FINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOMCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕESWe report upon the follow-up of 34 candidate lensed quasars found in the Dark Energy Survey using NTTEFOSC, Magellan-IMACS, KECK-ESI, and SOAR-SAMI. These candidates were selected by a combination of double component fitting, morphological assessment, and colour analysis. Most systems followed up are indeed composed of at least one quasar image and 13 with two or more quasar images: two lenses, four projected binaries, and seven nearly identical quasar pairs (NIQs). The two systems confirmed as genuine gravitationally lensed quasars are one quadruple at z(s) = 1.713 and one double at z(s) = 1.515. Lens modelling of these two systems reveals that both systems require very little contribution from the environment to reproduce the image configuration. Nevertheless, small flux anomalies can be observed in one of the images of the quad. Further observations of nine inconclusive systems (including seven NIQs) will allow to confirm (or not) their gravitational lens nature.480450175028FINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOMCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕESFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOMCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕESAgências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig

    Discovery of the lensed quasar system DES J0408-5354

    Get PDF
    We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (i<20) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects

    Models of the strongly lensed quasar DES J0408−5354

    Get PDF
    We present detailed modelling of the recently discovered, quadruply lensed quasar J0408−5354, with the aim of interpreting its remarkable configuration: besides three quasar images (A,B,D) around the main deflector (G1), a fourth image (C) is significantly reddened and dimmed by a perturber (G2) which is not detected in the Dark Energy Survey imaging data. From lens models incorporating (dust-corrected) flux ratios, we find a perturber Einstein radius 0.04 arcsec ≲ RE, G2 ≲ 0.2 arcsec and enclosed mass Mp(RE, G2) ≲ 1.0 × 1010 M⊙. The main deflector has stellar mass log10(M⋆/M⊙)=11.49+0.46−0.32, a projected mass Mp(RE, G1) ≈ 6 × 1011M within its Einstein radius RE, G1 = (1.85 ± 0.15) arcsec and predicted velocity dispersion 267–280 km s−1. Follow-up images from a companion monitoring campaign show additional components, including a candidate second source at a redshift between the quasar and G1. Models with free perturbers, and dust-corrected and delay-corrected flux ratios, are also explored. The predicted time-delays (ΔtAB = (135.0 ± 12.6) d, ΔtBD = (21.0 ± 3.5) d) roughly agree with those measured, but better imaging is required for proper modelling and comparison. We also discuss some lessons learnt from J0408−5354  on lensed quasar finding strategies, due to its chromaticity and morphology
    corecore