506 research outputs found

    Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As

    Full text link
    We report single-color, time resolved magneto-optical measurements in ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control of the magnetization precession by applying two successive ultrashort laser pulses. The magnetic field and temperature dependent experiments reveal the collective Mn-moment nature of the oscillatory part of the time-dependent Kerr rotation, as well as contributions to the magneto-optical signal that are not connected with the magnetization dynamics.Comment: 6 pages, 3 figures, accepted in Applied Physics Letter

    Thermal Stability and Mechanical Properties of 5483 Al Alloy Processed by ECAP

    Get PDF
    Equal Channel Angular Pressing (ECAP) is one of the methods which allows to obtain ultrafine-grained and nanocrystalline metallic materials. It is well known that microstructure of materials pro-cessed by ECAP in not very stable. There were published many experimental and theoretical evidences of this fact obtained by various methods such as microstructure observations, properties measurement and computer modeling. The aim of presented paper was to investigate the thermal stability of microstructure and mechanical properties of the Al 5483 alloy processed by ECAP. As a result of performed investigations it was concluded that accumulated plastic deformation has no influence on the thermal stability of Al 5483 alloy processed by ECAP. It was also found that properly chosen parameters of ECAP and subsequent annealing allows to produce materials with high strength and plasticity. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3543

    Laser-induced Precession of Magnetization in GaMnAs

    Full text link
    We report on the photo-induced precession of the ferromagnetically coupled Mn spins in (Ga,Mn)As, which is observed even with no external magnetic field applied. We concentrate on various experimental aspects of the time-resolved magneto-optical Kerr effect (TR-MOKE) technique that can be used to clarify the origin of the detected signals. We show that the measured data typically consist of several different contributions, among which only the oscillatory signal is directly connected with the ferromagnetic order in the sample.Comment: 4 pages, 5 figure

    Spin-dependent phenomena and device concepts explored in (Ga,Mn)As

    Full text link
    Over the past two decades, the research of (Ga,Mn)As has led to a deeper understanding of relativistic spin-dependent phenomena in magnetic systems. It has also led to discoveries of new effects and demonstrations of unprecedented functionalities of experimental spintronic devices with general applicability to a wide range of materials. In this article we review the basic material properties that make (Ga,Mn)As a favorable test-bed system for spintronics research and discuss contributions of (Ga,Mn)As studies in the general context of the spin-dependent phenomena and device concepts. Special focus is on the spin-orbit coupling induced effects and the reviewed topics include the interaction of spin with electrical current, light, and heat.Comment: 47 pages, 41 figure

    Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods

    Get PDF
    Fluorescence imaging of hybrid nanostructures composed of a bacterial light-harvesting complex LH2 and Au nanorods with controlled coupling strength is employed to study the spectral dependence of the plasmon-induced fluorescence enhancement. Perfect matching of the plasmon resonances in the nanorods with the absorption bands of the LH2 complexes facilitates a direct comparison of the enhancement factors for longitudinal and transverse plasmon frequencies of the nanorods. We find that the fluorescence enhancement due to excitation of longitudinal resonance can be up to five-fold stronger than for the transverse one. We attribute this result, which is important for designing plasmonic functional systems, to a very different distribution of the enhancement of the electric field due to the excitation of the two characteristic plasmon modes in nanorods

    SmarPer: Context-Aware and Automatic Runtime-Permissions for Mobile Devices

    Get PDF
    Permission systems are the main defense that mobile platforms, such as Android and iOS, offer to users to protect their private data from prying apps. However, due to the tension between usability and control, such systems have several limitations that often force users to overshare sensitive data. In this work, we address some of these limitations with SmarPer, an advanced permission mechanism for Android. First, to address the rigidity of current permission systems and their poor matching of users' privacy preferences, SmarPer relies on contextual information and machine learning to predict permission decisions at runtime. Using our SmarPer implementation, we collected 8,521 runtime permission decisions from 41 participants in real conditions. Note that the goal of SmarPer is to mimic the users decisions, not to make privacy-preserving decisions per se. With this unique data set, we show that tting an efcient Bayesian linear regression model results in a mean correct classication rate of 80% (3%). This represents a mean relative improvement of 50% over a user-dened static permission policy, i.e., the model used in current permission systems. Second, SmarPer also focuses on the suboptimal trade-off between privacy and utility; instead of only “allow” or “deny” decisions, SmarPer also offers an “obfuscate” option where users can still obtain utility by revealing partial information to apps. We implemented obfuscation techniques in SmarPer for different data types and evaluated them during our data collection campaign. Our results show that 73% of the participants found obfuscation useful and it accounted for almost a third of the total number of decisions. In short, we are the first to show, using a large dataset of real in situ permission decisions, that it is possible to learn users’ unique decision patterns at runtime using contextual information while supporting data obfuscation; this an important step towards automating the management of permissions in smartphones

    Material microstructure effects in micro-endmilling of Cu99.9E

    Get PDF
    This article presents an investigation of the machining response of metallurgically and mechanically modified materials at the micro-scale. Tests were conducted that involved micro-milling slots in coarse-grained Cu99.9E with an average grain size of 30 µm and ultrafine-grained Cu99.9E with an average grain size of 200 nm, produced by equal channel angular pressing. A new method based on atomic force microscope measurements is proposed for assessing the effects of material homogeneity changes on the minimum chip thickness required for a robust micro-cutting process with a minimum surface roughness. The investigation has shown that by refining the material microstructure the minimum chip thickness can be reduced and a high surface finish can be obtained. Also, it was concluded that material homogeneity improvements lead to a reduction in surface roughness and surface defects in micro-cutting

    Evidence for Excimer Photoexcitations in an Ordered {\pi}-Conjugated Polymer Film

    Full text link
    We report pressure-dependent transient picosecond and continuous-wave photomodulation studies of disordered and ordered films of 2-methoxy-5-(2-ethylhexyloxy) poly(para-phenylenevinylene). Photoinduced absorption (PA) bands in the disordered film exhibit very weak pressure dependence and are assigned to intrachain excitons and polarons. In contrast, the ordered film exhibits two additional transient PA bands in the midinfrared that blueshift dramatically with pressure. Based on high-order configuration interaction calculations we ascribe the PA bands in the ordered film to excimers. Our work brings insight to the exciton binding energy in ordered films versus disordered films and solutions. The reduced exciton binding energy in ordered films is due to new energy states appearing below the continuum band threshold of the single strand.Comment: 5.5 pages, 5 figure
    corecore