306 research outputs found
Effects of Salinity Changes on the Photodegradation and Ultraviolet-Visible Absorbance of Terrestrial Dissolved Organic Matter
We performed laboratory studies to determine the effects of salinity on the photodegradation of dissolved organic matter (DOM) from the Great Dismal Swamp, Virginia, an important source of terrestrial DOM to the lower Chesapeake Bay. Samples were created by mixing Great Dismal Swamp water (ionic strength approximate to 0 mol L-1) with modified artificial seawater solutions of differing salinities while keeping the final dissolved organic carbon (DOC) concentration constant. These samples were then irradiated for 24 h in a light box providing ultraviolet (UV) light similar to that of natural sunlight. Light absorbance and DOC concentrations decreased after photoexposure, whereas dissolved inorganic carbon (DIC) concentrations increased. Variations in salinity affected both DIC production and UV absorption, with the higher salinity samples showing lower DIC production and less photobleaching. Addition of an iron chelator eliminated the relationship between photochemistry and salinity by reducing both photobleaching and DIC production at low salinities. As terrigenous DOM transits through an estuary, its photochemical reactivity and optical properties may change significantly as a function of salinity, probably as a result of changes in DOM conformation or changes in iron-DOM photochemistry, or both
Establishment success of sooty beech scale insects, Ultracoelostoma sp., on different host tree species in New Zealand
The sooty beech scale insect (Ultracoelostoma sp.) (Hemiptera: Margarodidae) exhibits a highly patchy distribution at local and regional scales. A major factor driving this common distributional phenomenon in other phloem-feeding insects is aggregation and local adaptation. The aim of this study was to determine if Ultracoelostoma was locally adapted to its natal host trees, by contrasting the establishment rates of first instar “crawlers” in reciprocal transfers to natal versus novel hosts. Although there are two closely-related species of sooty beech scale insect, the morphological characters of crawlers in this study were intermediate between those of U. assimile and U. brittini. However, all of the voucher specimens examined had consistent morphology, indicating that they belong to one species which we refer to as Ultracoelostoma sp. Reciprocal transfers of crawlers were carried out between individual red beech (Nothofagus fusca), as well as between mountain beech (N. solandri) and red beech trees, to ascertain if insects had become locally adapted to their individual host tree or to host species. In total, 480 crawlers were placed in enclosures on their natal and novel host trees, of which only 32 (6.7 %) became established. No evidence for local adaptation, either to individual host trees or to host tree species, was found. There was also no difference in crawler establishment between natal and novel hosts. However, crawlers originating from mountain beech trees had significantly higher establishment rates on both natal mountain beech and novel red beech hosts, than did crawlers originating from red beech trees. The superior ability of mountain beech crawlers to become established, even on novel red beech trees, suggests that scale insects on mountain beech trees have higher individual fitness (possibly due to maternal effects mediated by differences in host nutritional quality, defensive compounds or growth rate). This increased fitness may result in crawlers being better provisioned to search for appropriate establishment sites. The results of this study indicate that beech scale insects perform better on mountain beech at this site, although crawlers did not preferentially establish on mountain beech
Photochemical Degradation of Dissolved Organic Matter and Dissolved Lignin Phenols from the Congo River
Photochemical degradation of Congo River dissolved organic matter (DOM) was investigated to examine the fate of terrigenous DOM derived from tropical ecosystems. Tropical riverine DOM receives greater exposure to solar radiation, particularly in large river plumes discharging directly into the open ocean. Initial Congo River DOM exhibited dissolved organic carbon (DOC) concentration and compositional characteristics typical of organic rich blackwater systems. During a 57 day irradiation experiment, Congo River DOM was shown to be highly photoreactive with a decrease in DOC, chromophoric DOM (CDOM), lignin phenol concentrations (Σ8) and carbon-normalized yields (Λ8), equivalent to losses of ~45, 85–95, \u3e95 and \u3e95% of initial values, respectively, and a +3.1 % enrichment of the δ13C-DOC signature. The loss of Λ8 and enrichment of δ13C-DOC during irradiation was strongly correlated (r = 0.99, p \u3c 0.01) indicating tight coupling between these biomarkers. Furthermore, the loss of CDOM absorbance was correlated to the loss of Λ8 (e.g., a355 versus Λ8; r = 0.98, p \u3c 0.01) and δ13C-DOC (e.g., a355 versus δ13C; r = 0.97, p \u3c 0.01), highlighting the potential of CDOM absorbance measurements for delineating the photochemical degradation of lignin and thus terrigenous DOM. It is apparent that these commonly used measurements for examination of terrigenous DOM in the oceans have a higher rate of photochemical decay than the bulk DOC pool. Further process-based studies are required to determine the selective removal rates of these biomarkers for advancement of our understanding of the fate of this material in the ocean
The Passive Yet Successful Way of Planktonic Life: Genomic and Experimental Analysis of the Ecology of a Free-Living Polynucleobacter Population
Background: The bacterial taxon Polynucleobacter necessarius subspecies asymbioticus represents a group of planktonic freshwater bacteria with cosmopolitan and ubiquitous distribution in standing freshwater habitats. These bacteria comprise,1 % to 70 % (on average about 20%) of total bacterioplankton cells in various freshwater habitats. The ubiquity of this taxon was recently explained by intra-taxon ecological diversification, i.e. specialization of lineages to specific environmental conditions; however, details on specific adaptations are not known. Here we investigated by means of genomic and experimental analyses the ecological adaptation of a persistent population dwelling in a small acidic pond. Findings: The investigated population (F10 lineage) contributed on average 11 % to total bacterioplankton in the pond during the vegetation periods (ice-free period, usually May to November). Only a low degree of genetic diversification of the population could be revealed. These bacteria are characterized by a small genome size (2.1 Mb), a relatively small number of genes involved in transduction of environmental signals, and the lack of motility and quorum sensing. Experiments indicated that these bacteria live as chemoorganotrophs by mainly utilizing low-molecular-weight substrates derived from photooxidation of humic substances. Conclusions: Evolutionary genome streamlining resulted in a highly passive lifestyle so far only known among free-living bacteria from pelagic marine taxa dwelling in environmentally stable nutrient-poor off-shore systems. Surprisingly, such a lifestyle is also successful in a highly dynamic and nutrient-richer environment such as the water column of the investigate
Predictors of Ips confusus Outbreaks During a Record Drought in Southwestern USA: Implications for Monitoring and Management
In many ecosystems the effects of disturbance can be cryptic and disturbance may vary in subtle spatiotemporal ways. For instance, we know that bark beetle outbreaks are more frequent in temperate forests during droughts; however, we have little idea about why they occur in some locations and not others. Understanding biotic and abiotic factors promoting bark beetle outbreaks can be critical to predicting and responding to pest outbreaks. Here we address the environmental factors which are associated with Ips confusus outbreaks during the 2002 widespread drought within the distribution range of pinyon pine woodlands in Arizona. We used univariate statistics to test if whether tree characteristics, other herbivores, stand properties, soil type, wind, and topography were associated with I. confusus outbreak, and logistic regression to create a predictive model for the outbreaks. We found that I. confusus attacks occur in low elevation stands on steeper slopes, where favorable winds for I. confusus dispersion occur. I. confusus select larger trees, in high density stands with understory shrubs that exhibit phenotypic traits characteristic of resistance to stem-boring moths. The model was highly accurate, and explained 95% of the variability in occurrence (98% of the absences and 95% of the presences). Accurate prediction of the impacts of disturbance allow us to anticipate, minimize or mitigate for and eventually counteract its effects, especially those affecting diversity and ecosystem function. Identification of outbreak risk areas can guide regional and national management towards the reduction of infestation risk and enhancing conservation of pinyon-juniper woodlands
TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton
Nanoparticulate titanium dioxide (TiO2) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO2. Because TiO2 generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO2 has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO2 is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO2 have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO2 toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO2 on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO2 concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO2, and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive
Genetic Structure in the Seabuckthorn Carpenter Moth (Holcocerus hippophaecolus) in China: The Role of Outbreak Events, Geographical and Host Factors
Understanding factors responsible for structuring genetic diversity is of fundamental importance in evolutionary biology. The seabuckthorn carpenter moth (Holcocerus hippophaecolus Hua) is a native species throughout the north of China and is considered the main threat to seabuckthorn, Hippophae rhamnoides L. We assessed the influence of outbreaks, environmental factors and host species in shaping the genetic variation and structure of H. hippophaecolus by using Amplified Fragment Length Polymorphism (AFLP) markers. We rejected the hypothesis that outbreak-associated genetic divergence exist, as evidenced by genetic clusters containing a combination of populations from historical outbreak areas, as well as non-outbreak areas. Although a small number of markers (4 of 933 loci) were identified as candidates under selection in response to population densities. H. hippophaecolus also did not follow an isolation-by-distance pattern. We rejected the hypothesis that outbreak and drought events were driving the genetic structure of H. hippophaecolus. Rather, the genetic structure appears to be influenced by various confounding bio-geographical factors. There were detectable genetic differences between H. hippophaecolus occupying different host trees from within the same geographic location. Host-associated genetic divergence should be confirmed by further investigation
The changing carbon cycle of the coastal ocean
The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget
Environmental sensing and response genes in cnidaria : the chemical defensome in the sea anemone Nematostella vectensis
Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Cell Biology and Toxicology 24 (2008): 483-502, doi:10.1007/s10565-008-9107-5.The starlet sea anemone Nematostella vectensis has been recently established as a
new model system for the study of the evolution of developmental processes, as cnidaria
occupy a key evolutionary position at the base of the bilateria. Cnidaria play important
roles in estuarine and reef communities, but are exposed to many environmental stressors.
Here I describe the genetic components of a ‘chemical defensome’ in the genome of
N. vectensis, and review cnidarian molecular toxicology. Gene families that defend
against chemical stressors and the transcription factors that regulate these genes have
been termed a ‘chemical defensome,’ and include the cytochromes P450 and other
oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters,
oxidative detoxification proteins, as well as various transcription factors. These genes
account for about 1% (266/27200) of the predicted genes in the sea anemone genome,
similar to the proportion observed in tunicates and humans, but lower than that observed
in sea urchins. While there are comparable numbers of stress-response genes, the stress
sensor genes appear to be reduced in N. vectensis relative to many model protostomes
and deuterostomes. Cnidarian toxicology is understudied, especially given the important
ecological roles of many cnidarian species. New genomic resources should stimulate the
study of chemical stress sensing and response mechanisms in cnidaria, and allow us to
further illuminate the evolution of chemical defense gene networks.WHOI Ocean Life Institute and NIH R01-ES01591
- …