66 research outputs found

    The changing use of the ovipositor in host shifts by ichneumonid ectoparasitoids of spiders (Hymenoptera, Ichneumonidae, Pimplinae)

    Get PDF
    Accurate egg placement into or onto a living host is an essential ability for many parasitoids, and changes in associated phenotypes, such as ovipositor morphology and behaviour, correlate with significant host shifts. Here, we report that in the ichneumonid group of koinobiont spider-ectoparasitoids ("polysphinctines"), several putatively ancestral taxa (clade I here), parasitic on ground-dwelling RTA-spiders (a group characterised by retrolateral tibial apophysis on male palpal tibiae), lay their eggs in a specific way. They tightly bend their metasoma above the spider's cephalothorax, touching the carapace with the dorsal side of the ovipositor apically ("dorsal-press"). The egg slips out from the middle part of the ventral side of the ovipositor and moves towards its apex with the parted lower valves acting as rails. Deposition occurs as the parasitoid draws the ovipositor backwards from under the egg. Oviposition upon the tough carapace of the cephalothorax, presumably less palatable than the abdomen, is conserved in these taxa, and presumed adaptive through avoiding physical damage to the developing parasitoid. This specific way of oviposition is reversed in the putatively derived clade of polysphinctines (clade II here) parasitic on Araneoidea spiders with aerial webs, which is already known. They bend their metasoma along the spider's abdomen, grasping the abdomen with their fore/mid legs, pressing the ventral tip of the metasoma and the lower valves of the ovipositor against the abdomen ("ventral-press"). The egg is expelled through an expansion of the lower valves, which is developed only in this clade and evident in most species, onto the softer and presumably more nutritious abdomen

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015

    Asian Betylobraconinae (Hymenoptera, Braconidae), with description of a new genus and phylogenetic affinities of the tribe Facitorini

    No full text
    22 pages.The taxonomy of the Asian genera of the subfamily Betylobraconinae, a small and understudied group within the hymenopteran family Braconidae, is revised. A new genus exclusively from the Asian region, Asiabregma gen. nov., containing three species (A. ryukyuensis sp. nov. (type species, Japan and Malaya), A. makiharai sp. nov. (Japan) and A. sulaensis (van Achterberg), comb. nov. (Indonesia)) is described. One new species of Aulosaphobracon, A. striatus sp. nov. from Vietnam, and one of Facitorus, F. amamioshimus sp. nov. from Japan, are also described. Based on molecular phylogenetic analyses using COI mtDNA and 28S rRNA sequences, the three genera previously placed in the tribe Facitorini, Facitorus, Conobregma and Jannya, together with Asiabregma gen. nov., are transferred to the rogadine tribe Yeliconini.Peer reviewe
    corecore