1,893 research outputs found
Barrier-to-autointegration factor 1 protects against a basal cGAS-STING response
Although the pathogen recognition receptor pathways that activate cell-intrinsic antiviral responses are well delineated, less is known about how the host regulates this response to prevent sustained signaling and possible immune-mediated damage. Using a genome-wide CRISPR-Cas9 screening approach to identify host factors that modulate interferon-stimulated gene (ISG) expression, we identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1), a previously described inhibitor of retrovirus integration, as a modulator of basal cell-intrinsic immunity. Ablation of Banf1 by gene editing resulted in chromatin activation near host defense genes with associated increased expression of ISGs, includin
High- production as signals for Double Parton scattering at hadron colliders
We present an analysis of the \psi\psi production from double parton (DP)
sacttering and single parton (SP) scattering in the large p_T region via
color-octet gluon fragmentation. We find that at the Tevatron the DP \psi\psi
production is at the edge of the detectability at present, and at the LHC the
DP cross section will dominate over the SP cross section in the lower p_T(min)
region (i.e., p_T(min)<7GeV). We also conclude that the color-octet mechanism
is of crucial importance to the double j/psi production at high energy hadron
colliders.Comment: Revtex, 12 pages, 3 Postscript figure
Heavy Quark Production In Hadronic Collisions
We review the physics of heavy quark and quarkonium production in high energy
hadronic collisions. We discuss the status of the theoretical calculations and
compare the current results with the most recent measurements from the Tevatron
collider experiments.Comment: 12 pages, latex, 7 postscript figures, compressed and submitted
separately. To appear in the Proceedings of the 6th International Symposium
on Heavy Flavour Physics, Pisa, Italy, June 6-10, 199
A New Scintillator Tile/Fiber Preshower Detector for the CDF Central Calorimeter
A detector designed to measure early particle showers has been installed in
front of the central CDF calorimeter at the Tevatron. This new preshower
detector is based on scintillator tiles coupled to wavelength-shifting fibers
read out by multi-anode photomultipliers and has a total of 3,072 readout
channels. The replacement of the old gas detector was required due to an
expected increase in instantaneous luminosity of the Tevatron collider in the
next few years. Calorimeter coverage, jet energy resolution, and electron and
photon identification are among the expected improvements. The final detector
design, together with the R&D studies that led to the choice of scintillator
and fiber, mechanical assembly, and quality control are presented. The detector
was installed in the fall 2004 Tevatron shutdown and started collecting
colliding beam data by the end of the same year. First measurements indicate a
light yield of 12 photoelectrons/MIP, a more than two-fold increase over the
design goals.Comment: 5 pages, 10 figures (changes are minor; this is the final version
published in IEEE-Trans.Nucl.Sci.
Recommended from our members
Implementation of the shower max electron trigger at CDF
The authors have built and installed new electronics which brings the central shower max detector into the CDF Level-2 trigger. By matching a stiff track from the central fast track processor to an associated shower max cluster, this trigger improvement reduces the electron Level-2 cross section by approximately 50% while retaining greater than 85% of real electrons and allows the authors to lower their electron trigger threshold
A Search for Dark Matter Annihilation with the Whipple 10m Telescope
We present observations of the dwarf galaxies Draco and Ursa Minor, the local
group galaxies M32 and M33, and the globular cluster M15 conducted with the
Whipple 10m gamma-ray telescope to search for the gamma-ray signature of
self-annihilating weakly interacting massive particles (WIMPs) which may
constitute astrophysical dark matter (DM). We review the motivations for
selecting these sources based on their unique astrophysical environments and
report the results of the data analysis which produced upper limits on excess
rate of gamma rays for each source. We consider models for the DM distribution
in each source based on the available observational constraints and discuss
possible scenarios for the enhancement of the gamma-ray luminosity. Limits on
the thermally averaged product of the total self-annihilation cross section and
velocity of the WIMP, , are derived using conservative estimates for
the magnitude of the astrophysical contribution to the gamma-ray flux. Although
these limits do not constrain predictions from the currently favored
theoretical models of supersymmetry (SUSY), future observations with VERITAS
will probe a larger region of the WIMP parameter phase space, and
WIMP particle mass (m_\chi).Comment: 33 pages, 12 figures, accepted for publication in the Astrophysical
Journa
- …