1,225 research outputs found
Effect of forward motion on engine noise
Methods used to determine a procedure for correcting static engine data for the effects of forward motion are described. Data were analyzed from airplane flyover and static-engine tests with a JT8D-109 low-bypass-ratio turbofan engine installed on a DC-9-30, with a CF6-6D high-bypass-ratio turbofan engine installed on a DC-10-10, and with a JT9D-59A high-bypass-ratio turbofan engine installed on a DC-10-40. The observed differences between the static and the flyover data bases are discussed in terms of noise generation, convective amplification, atmospheric propagation, and engine installation. The results indicate that each noise source must be adjusted separately for forward-motion and installation effects and then projected to flight conditions as a function of source-path angle, directivity angle, and acoustic range relative to the microphones on the ground
Further joint X-ray, infrared and radio observations of Cygnus X-3
Observations of Cygnus X-3 were carried out at 2.5 - 7.5 keV, 2.2 micron, 8.1 GHz and 2.7 GHz over a two week period. The X-ray data show the periodic structure which is typical of Cyg X-3. At times the X-ray and infrared measurements show very similar periodic structure, both in phase and shape, while at other times the infrared data show no periodic variability. The radio fluxes were usually low during the period of observation; both the daily average radio flux levels and spectral index remained nearly constant
Quantum transport in quantum networks and photosynthetic complexes at the steady state
Recently, several works have analysed the efficiency of photosynthetic
complexes in a transient scenario and how that efficiency is affected by
environmental noise. Here, following a quantum master equation approach, we
study the energy and excitation transport in fully connected networks both in
general and in the particular case of the Fenna-Matthew-Olson complex. The
analysis is carried out for the steady state of the system where the excitation
energy is constantly "flowing" through the system. Steady state transport
scenarios are particularly relevant if the evolution of the quantum system is
not conditioned on the arrival of individual excitations. By adding dephasing
to the system, we analyse the possibility of noise-enhancement of the quantum
transport.Comment: 10 pages, single column, 6 figures. Accepted for publication in Plos
On
Sensitivities of Low Energy Reactor Neutrino Experiments
The low energy part of the reactor neutrino spectra has not been
experimentally measured. Its uncertainties limit the sensitivities in certain
reactor neutrino experiments. The origin of these uncertainties are discussed,
and the effects on measurements of neutrino interactions with electrons and
nuclei are studied. Comparisons are made with existing results. In particular,
the discrepancies between previous measurements with Standard Model
expectations can be explained by an under-estimation of the low energy reactor
neutrino spectra. To optimize the experimental sensitivities, measurements for
\nuebar-e cross-sections should focus on events with large (1.5 MeV)
recoil energy while those for neutrino magnetic moment searches should be based
on events 100 keV. The merits and attainable accuracies for
neutrino-electron scattering experiments using artificial neutrino sources are
discussed.Comment: 25 pages, 9 figure
Quantum physics meets biology
Quantum physics and biology have long been regarded as unrelated disciplines,
describing nature at the inanimate microlevel on the one hand and living
species on the other hand. Over the last decades the life sciences have
succeeded in providing ever more and refined explanations of macroscopic
phenomena that were based on an improved understanding of molecular structures
and mechanisms. Simultaneously, quantum physics, originally rooted in a world
view of quantum coherences, entanglement and other non-classical effects, has
been heading towards systems of increasing complexity. The present perspective
article shall serve as a pedestrian guide to the growing interconnections
between the two fields. We recapitulate the generic and sometimes unintuitive
characteristics of quantum physics and point to a number of applications in the
life sciences. We discuss our criteria for a future quantum biology, its
current status, recent experimental progress and also the restrictions that
nature imposes on bold extrapolations of quantum theory to macroscopic
phenomena.Comment: 26 pages, 4 figures, Perspective article for the HFSP Journa
Volcanism in Antarctica: An assessment of the present state of research and future directions
Over the past decades, significant efforts have been made to understand the nature, dynamics and evolution of volcanic systems. In parallel, the continuous demographic expansion and extensive urbanization of volcanic areas have increased the exposure of our society to these natural phenomena. This increases the need to improve our capacities to accurately assess projected volcanic hazards and their potential socioeconomic and environmental impact, and Antarctica and the sub-Antarctic islands are no exception. More than a hundred volcanoes have been identified in Antarctica, some of which are entirely buried beneath the ice sheet and others as submarine volcanoes. Of these, at least eight large (basal diameters > c. 20-30 km) volcanoes are known to be active and pose a considerable threat to scientific and ever-increasing tourism activities being carried out in the region. Despite the scientific and socioeconomic interest, many aspects of the past volcanic activity and magmatic processes in Antarctica, and current volcanic hazards and risks, remain unknown. Moreover, many of Antarctica's volcanoes preserve a remarkable history of the eruptive environment, from which multiple parameters of past configurations of the Antarctic ice sheet (AIS) can be deduced. Given the critical role that the AIS plays in regulating Earth's climate, Antarctica's volcanoes therefore can be regarded as the ground truth for current models of past climates derived from modelling and studies of marine sediments. Here, we provide a succinct overview of the evolution of volcanism and magmatism in Antarctica and the sub-Antarctic region over the past 200 million years. Then, we briefly review the current state of knowledge of the most crucial aspects regarding Antarctica's volcanic and magmatic processes, and the contributions volcanic studies have made to our understanding of ice sheet history and evolution, geothermal heat flow, as well as present-day and future volcanic hazard and risk. A principal objective is to highlight the problems and critical limitations of the current state of knowledge and to provide suggestions for future potential directions of volcanic-driven investigations in Antarctica. Finally, we also discuss and assess the importance and scope of education and outreach activities specifically relating to Antarctic volcanism, and within the context of broader polar sciences
Mechanical Stress Inference for Two Dimensional Cell Arrays
Many morphogenetic processes involve mechanical rearrangement of epithelial
tissues that is driven by precisely regulated cytoskeletal forces and cell
adhesion. The mechanical state of the cell and intercellular adhesion are not
only the targets of regulation, but are themselves likely signals that
coordinate developmental process. Yet, because it is difficult to directly
measure mechanical stress {\it in vivo} on sub-cellular scale, little is
understood about the role of mechanics of development. Here we present an
alternative approach which takes advantage of the recent progress in live
imaging of morphogenetic processes and uses computational analysis of high
resolution images of epithelial tissues to infer relative magnitude of forces
acting within and between cells. We model intracellular stress in terms of bulk
pressure and interfacial tension, allowing these parameters to vary from cell
to cell and from interface to interface. Assuming that epithelial cell layers
are close to mechanical equilibrium, we use the observed geometry of the two
dimensional cell array to infer interfacial tensions and intracellular
pressures. Here we present the mathematical formulation of the proposed
Mechanical Inverse method and apply it to the analysis of epithelial cell
layers observed at the onset of ventral furrow formation in the {\it
Drosophila} embryo and in the process of hair-cell determination in the avian
cochlea. The analysis reveals mechanical anisotropy in the former process and
mechanical heterogeneity, correlated with cell differentiation, in the latter
process. The method opens a way for quantitative and detailed experimental
tests of models of cell and tissue mechanics
Quantum entanglement in photosynthetic light harvesting complexes
Light harvesting components of photosynthetic organisms are complex, coupled,
many-body quantum systems, in which electronic coherence has recently been
shown to survive for relatively long time scales despite the decohering effects
of their environments. Within this context, we analyze entanglement in
multi-chromophoric light harvesting complexes, and establish methods for
quantification of entanglement by presenting necessary and sufficient
conditions for entanglement and by deriving a measure of global entanglement.
These methods are then applied to the Fenna-Matthews-Olson (FMO) protein to
extract the initial state and temperature dependencies of entanglement. We show
that while FMO in natural conditions largely contains bipartite entanglement
between dimerized chromophores, a small amount of long-range and multipartite
entanglement exists even at physiological temperatures. This constitutes the
first rigorous quantification of entanglement in a biological system. Finally,
we discuss the practical utilization of entanglement in densely packed
molecular aggregates such as light harvesting complexes.Comment: 14 pages, 7 figures. Improved presentation, published versio
Non-Markovian stochastic description of quantum transport in photosynthetic systems
We analyze several aspects of the transport dynamics in the LH1-RC core of
purple bacteria, which consists basically in a ring of antenna molecules that
transport the energy into a target molecule, the reaction center, placed in the
center of the ring. We show that the periodicity of the system plays an
important role to explain the relevance of the initial state in the transport
efficiency. This picture is modified, and the transport enhanced for any
initial state, when considering that molecules have different energies, and
when including their interaction with the environment. We study this last
situation by using stochastic Schr{\"o}dinger equations, both for Markovian and
non-Markovian type of interactions.Comment: 21 pages, 5 figure
Motional effects on the efficiency of excitation transfer
Energy transfer plays a vital role in many natural and technological
processes. In this work, we study the effects of mechanical motion on the
excitation transfer through a chain of interacting molecules with application
to biological scenarios of transfer processes. Our investigation demonstrates
that, for various types of mechanical oscillations, the transfer efficiency is
significantly enhanced over that of comparable static configurations. This
enhancement is a genuine quantum signature, and requires the collaborative
interplay between the quantum-coherent evolution of the excitation and the
mechanical motion of the molecules; it has no analogue in the classical
incoherent energy transfer. This effect may not only occur naturally, but it
could be exploited in artificially designed systems to optimize transport
processes. As an application, we discuss a simple and hence robust control
technique.Comment: 25 pages, 11 figures; completely revised; version accepted for
publicatio
- …