1,982 research outputs found

    Dynamics of Global Entanglement under Decoherence

    Full text link
    We investigate the dynamics of global entanglement, the Meyer-Wallach measure, under decoherence, analytically. We study two important class of multi-partite entangled states, the Greenberger-Horne-Zeilinger and the W state. We obtain exact results for various models of system-environment interactions (decoherence). Our results shows distinctly different scaling behavior for these initially entangled states indicating a relative robustness of the W state, consistent with previous studies.Comment: 5 pages and 5 figure

    Quantum complexities of ordered searching, sorting, and element distinctness

    Full text link
    We consider the quantum complexities of the following three problems: searching an ordered list, sorting an un-ordered list, and deciding whether the numbers in a list are all distinct. Letting N be the number of elements in the input list, we prove a lower bound of \frac{1}{\pi}(\ln(N)-1) accesses to the list elements for ordered searching, a lower bound of \Omega(N\log{N}) binary comparisons for sorting, and a lower bound of \Omega(\sqrt{N}\log{N}) binary comparisons for element distinctness. The previously best known lower bounds are {1/12}\log_2(N) - O(1) due to Ambainis, \Omega(N), and \Omega(\sqrt{N}), respectively. Our proofs are based on a weighted all-pairs inner product argument. In addition to our lower bound results, we give a quantum algorithm for ordered searching using roughly 0.631 \log_2(N) oracle accesses. Our algorithm uses a quantum routine for traversing through a binary search tree faster than classically, and it is of a nature very different from a faster algorithm due to Farhi, Goldstone, Gutmann, and Sipser.Comment: This new version contains new results. To appear at ICALP '01. Some of the results have previously been presented at QIP '01. This paper subsumes the papers quant-ph/0009091 and quant-ph/000903

    Quantum Cryptography Based on the Time--Energy Uncertainty Relation

    Get PDF
    A new cryptosystem based on the fundamental time--energy uncertainty relation is proposed. Such a cryptosystem can be implemented with both correlated photon pairs and single photon states.Comment: 5 pages, LaTex, no figure

    Massive creation of entangled exciton states in semiconductor quantum dots

    Full text link
    An intense laser pulse propagating in a medium of inhomogeneously broadened quantum dots massively creates entangled exciton states. After passage of the pulse all single-exciton states remain unpopulated (self-induced transparency) whereas biexciton coherence (exciton entanglement) is generated through two-photon transitions. We propose several experimental techniques for the observation of such unexpected behavior

    Entanglement of electrons in interacting molecules

    Get PDF
    Quantum entanglement is a concept commonly used with reference to the existence of certain correlations in quantum systems that have no classical interpretation. It is a useful resource to enhance the mutual information of memory channels or to accelerate some quantum processes as, for example, the factorization in Shor's Algorithm. Moreover, entanglement is a physical observable directly measured by the von Neumann entropy of the system. We have used this concept in order to give a physical meaning to the electron correlation energy in systems of interacting electrons. The electronic correlation is not directly observable, since it is defined as the difference between the exact ground state energy of the many--electrons Schroedinger equation and the Hartree--Fock energy. We have calculated the correlation energy and compared with the entanglement, as functions of the nucleus--nucleus separation using, for the hydrogen molecule, the Configuration Interaction method. Then, in the same spirit, we have analyzed a dimer of ethylene, which represents the simplest organic conjugate system, changing the relative orientation and distance of the molecules, in order to obtain the configuration corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late

    Microcurrent stimulation in the treatment of dry and wet macular degeneration

    Get PDF
    Purpose: To determine the safety and efficacy of the application of transcutaneous (transpalpebral) microcurrent stimulation to slow progression of dry and wet macular degeneration or improve vision in dry and wet macular degeneration. Methods: Seventeen patients aged between 67 and 95 years with an average age of 83 years were selected to participate in the study over a period of 3 months in two eye care centers. There were 25 eyes with dry age-related macular degeneration (DAMD) and six eyes with wet age-related macular degeneration (WAMD). Frequency-specific microcurrent stimulation was applied in a transpalpebral manner, using two programmable dual channel microcurrent units delivering pulsed microcurrent at 150 ÎŒA for 35 minutes once a week. The frequency pairs selected were based on targeting tissues, which are typically affected by the disease combined with frequencies that target disease processes. Early Treatment Diabetic Retinopathy Study or Snellen visual acuity (VA) was measured before and after each treatment session. All treatment was administered in a clinical setting. Results: Significant increases were seen in VA in DAMD (P=0.012, Wilcoxon one-sample test), but in WAMD, improvements did not reach statistical significance (P=0.059). In DAMD eyes, twice as many patients showed increase in VA (52%) compared to those showing dete-rioration (26%), with improvements being often sizeable, whereas deteriorations were usually very slight. In WAMD eyes, five of six (83%) patients showed an increase and none showed deterioration. Conclusion: The substantial changes observed over this period, combined with continued improvement for patients who continued treatment once a month, are encouraging for future studies. The changes observed indicate the potential efficacy of microcurrent to delay degeneration and possibly improve age-related macular degeneration, both wet and dry. However, this study has no control arm, so results should be treated with caution. Randomized double-blind controlled studies are needed to determine long-term effects

    Scaling Property of the global string in the radiation dominated universe

    Get PDF
    We investigate the evolution of the global string network in the radiation dominated universe by use of numerical simulations in 3+1 dimensions. We find that the global string network settles down to the scaling regime where the energy density of global strings, ρs\rho_{s}, is given by ρs=ΟΌ/t2\rho_{s} = \xi \mu / t^2 with ÎŒ\mu the string tension per unit length and the scaling parameter, Ο∌(0.9−1.3)\xi \sim (0.9-1.3), irrespective of the cosmic time. We also find that the loop distribution function can be fitted with that predicted by the so-called one scale model. Concretely, the number density, nl(t)n_{l}(t), of the loop with the length, ll, is given by nl(t)=Îœ/[t3/2(l+Îșt)5/2]n_{l}(t) = \nu/[t^{3/2} (l + \kappa t)^{5/2}] where Μ∌0.0865\nu \sim 0.0865 and Îș\kappa is related with the Nambu-Goldstone(NG) boson radiation power from global strings, PP, as P=ÎșÎŒP = \kappa \mu with Îș∌0.535\kappa \sim 0.535. Therefore, the loop production function also scales and the typical scale of produced loops is nearly the horizon distance. Thus, the evolution of the global string network in the radiation dominated universe can be well described by the one scale model in contrast with that of the local string network.Comment: 18 pages, 9 figures, to appear in Phys. Rev.

    Contribution of Long Wavelength Gravitational Waves to the CMB Anisotropy

    Full text link
    We present an in depth discussion of the production of gravitational waves from an inflationary phase that could have occurred in the early universe, giving derivations for the resulting spectrum and energy density. We also consider the large-scale anisotropy in the cosmic microwave background radiation coming from these waves. Assuming that the observed quadrupole anisotropy comes mostly from gravitational waves (consistent with the predictions of a flat spectrum of scalar density perturbations and the measured dipole anisotropy) we describe in detail how to derive a value for the scale of inflation of (1.5−5)×1016(1.5-5)\times 10^{16}GeV, which is at a particularly interesting scale for particle physics. This upper limit corresponds to a 95\% confidence level upper limit on the scale of inflation assuming only that the quadrupole anisotropy from gravitational waves is not cancelled by another source. Direct detection of gravitational waves produced by inflation near this scale will have to wait for the next generation of detectors.Comment: (LaTeX 16 pages), 2 figures not included, YCTP-P16-9
    • 

    corecore