491 research outputs found

    Thermal X-Ray Emission from Shocked Ejecta in Type Ia Supernova Remnants II: Parameters Affecting the Spectrum

    Full text link
    The supernova remnants left behind by Type Ia supernovae provide an excellent opportunity for the study of these enigmatic objects. In a previous work, we showed that it is possible to use the X-ray spectra of young Type Ia supernova remnants to explore the physics of Type Ia supernovae and identify the relevant mechanism underlying these explosions. Our simulation technique is based on hydrodynamic and nonequilibrium ionization calculations of the interaction of a grid of Type Ia explosion models with the surrounding ambient medium, coupled to an X-ray spectral code. In this work we explore the influence of two key parameters on the shape of the X-ray spectrum of the ejecta: the density of the ambient medium around the supernova progenitor and the efficiency of collisionless electron heating at the reverse shock. We also discuss the performance of recent 3D simulations of Type Ia SN explosions in the context of the X-ray spectra of young SNRs. We find a better agreement with the observations for Type Ia supernova models with stratified ejecta than for 3D deflagration models with well mixed ejecta. We conclude that our grid of Type Ia supernova remnant models can improve our understanding of these objects and their relationship to the supernovae that originated them.Comment: Accepted for publication in Ap

    Ionization States and Plasma Structures of Mixed-morphology SNRs Observed with ASCA

    Full text link
    We present the results of a systematic study using ASCA of the ionization state for six ``mixed-morphology'' supernova emnants (MMSNRs): IC 443, W49B, W28, W44, 3C391, and Kes 27. MMSNRs show centrally filled thermal X-ray emission, which contrasts to shell-like radio morphology, a set of haracteristics at odds with the standard model of SNR evolution (e.g., the Sedov model). We have therefore studied the evolution of the MMSNRs from the ionization conditions inferred from the X-ray spectra, independent of X-ray morphology. We find highly ionized plasmas approaching ionization equilibrium in all the mmsnrs. The degree of ionization is systematically higher than the plasma usually seen in shell-like SNRs. Radial temperature gradients are also observed in five remnants, with cooler plasma toward the limb. In IC 443 and W49B, we find a plasma structure consistent with shell-like SNRs, suggesting that at least some MMSNRs have experienced similar evolution to shell-like SNRs. In addition to the results above, we have discovered an ``overionized'' ionization state in W49B, in addition to that previously found in IC 443. Thermal conduction can cause the hot interior plasma to become overionized by reducing the temperature and density gradients, leading to an interior density increase and temperature decrease. Therefore, we suggest that the ``center-filled'' X-ray morphology develops as the result of thermal conduction, and should arise in all SNRs. This is consistent with the results that MMSNRs are near collisional ionization equilibrium since the conduction timescale is roughly similar to the ionization timescale. Hence, we conclude that MMSNRs are those that have evolved over∌104\sim10^4 yr. We call this phase as the ``conduction phase.''Comment: 34 pages, 20 figures, 9 tables, accepted for publication in The Astrophysical Journa

    The Kinematics of Kepler's Supernova Remnant as revealed by Chandra

    Full text link
    I determine the expansion of the supernova remnant of SN1604 (Kepler's supernova) based on archival Chandra ACIS-S observations made in 2000 and 2006. The measurements were done in several distinct energy bands, and were made for the remnant as a whole, and for six individual sectors. The average expansion parameter indicates that the remnant expands as r∝t0.5r \propto t^{0.5}, but there are significant differences in different parts of the remnant: the bright northwestern part expands as r∝t0.35r \propto t^{0.35}, whereas the rest of the remnant's expansion shows an expansion r∝t0.6r \propto t^{0.6}. The latter is consistent with an explosion in which the outer part of the ejecta has a negative power law slope for density (ρ∝v−n\rho \propto v^{-n}) of n=7n=7, or with an exponential density profile(ρ∝exp⁥(−v/ve)\rho \propto \exp(-v/v_e)). The expansion parameter in the southern region, in conjunction with the shock radius, indicate a rather low value (<5E50 erg) for the explosion energy of SN1604 for a distance of 4 kpc. An higher explosion energy is consistent with the results, if the distance is larger. The filament in the eastern part of the remnant, which is dominated by X-ray synchrotron radiation seems to mark a region with a fast shock speed r∝t0.7r \propto t^{0.7}, corresponding to a shock velocity of v= 4200 km/s, for a distance to SN1604 of 4 kpc. This is consistent with the idea that X-ray synchrotron emission requires shock velocities in excess of ~2000 km/s. The X-ray based expansion measurements reported are consistent with results based on optical and radio measurements, but disagree with previous X-ray measurements based on ROSAT and Einstein observations.Comment: Accepted for publication in ApJ. This new version is the accepted version, which differs mainly in the discussion sectio

    Cold Dust in Kepler's Supernova Remnant

    Full text link
    The timescales to replenish dust from the cool, dense winds of Asymptotic Giant Branch stars are believed to be greater than the timescales for dust destruction. In high redshift galaxies, this problem is further compounded as the stars take longer than the age of the Universe to evolve into the dust production stages. To explain these discrepancies, dust formation in supernovae (SNe) is required to be an important process but until very recently dust in supernova remnants has only been detected in very small quantities. We present the first submillimeter observations of cold dust in Kepler's supernova remnant (SNR) using SCUBA. A two component dust temperature model is required to fit the Spectral Energy Distribution (SED) with Twarm∌102T_{warm} \sim 102K and Tcold∌17T_{cold} \sim 17K. The total mass of dust implied for Kepler is ∌1M⊙\sim 1M_{\odot} - 1000 times greater than previous estimates. Thus SNe, or their progenitors may be important dust formation sites.Comment: 12 pages, 2 figures, accepted to ApJL, corrected proof

    The Earliest Optical Observations of GRB 030329

    Full text link
    We present the earliest optical imaging observations of GRB 030329 related to SN 2003dh. The burst was detected by the HETE-2 satellite at 2003 March 29, 11:37:14.67 UT. Our wide-field monitoring started 97 minutes before the trigger and the burst position was continuously observed. We found no precursor or contemporaneous flare brighter than V=5.1V=5.1 (V=5.5V=5.5) in 32 s (64 s) timescale between 10:00 and 13:00 UT. Follow-up time series photometries started at 12:51:39 UT (75 s after position notice through the GCN) and continued for more than 5 hours. The afterglow was Rc=12.35±0.07Rc= 12.35\pm0.07 at t=74t=74 min after burst. Its fading between 1.2 and 6.3 hours is well characterized by a single power-law of the form f(mJy)=(1.99±0.02(statistic)±0.14(systematic))×(t/1day)−0.890±0.006(statistic)±0.010(systematic)f{\rm(mJy)} = (1.99\pm0.02{\rm (statistic)}\pm0.14{\rm (systematic)}) \times (t/1 {\rm day})^{-0.890\pm 0.006 {\rm (statistic)}\pm 0.010 {\rm (systematic)}} in RcRc-band. No significant flux variation was detected and upper limits are derived as (Δf/f)RMS=3−5(\Delta f/f)_{\rm RMS} = 3-5% in minutes to hours timescales and (Δf/f)RMS=35−5(\Delta f/f)_{\rm RMS} = 35-5% in seconds to minutes timescales. Such a featureless lightcurve is explained by the smooth distribution of circumburst medium. Another explanation is that the optical band was above the synchrotron cooling frequency where emergent flux is insensitive to the ambient density contrasts. Extrapolation of the afterglow lightcurve to the burst epoch excludes the presence of an additional flare component at t<10t<10 minutes as seen in GRB 990123 and GRB 021211.Comment: ApJL, in pres

    Discovery of a new pulsating X-ray source with a 1549.1-s period, AX J183220-0840

    Full text link
    A new pulsating X-ray source, AX J183220-0840, with a 1549.1-s period was discovered at R.A.= 18h32m20s and Dec.=-8d40'30'' (J2000, uncertainty=0.6degree) during an ASCA observation on the Galactic plane. The source was observed two times, in 1997 and in 1999. A phase-averaged X-ray flux of 1.1E-11 ergs cm-2 s-1 and pulsation period of 1549.1+/-0.4 s were consistently obtained from these two observations. The X-ray spectrum was represented by a flat absorbed power-law with a photon-index of =~0.8 and an absorption column density of =~1.3E22 cm-2. Also, a signature of iron K-shell line emission with a centroid of 6.7 keV and an equivalent width of approximately 450 eV was detected. From the pulsation period and the iron-line feature, AX J183220-0840 is likely to be a magnetic white dwarf binary with a complexly absorbed thermal spectrum with a temperature of about 10 keV.Comment: 13 pages, 4 figures, accepted for publication in ApJ Letter
    • 

    corecore