7,350 research outputs found

    Metallic and Insulating Adsorbates on Graphene

    Full text link
    We directly compare the effect of metallic titanium (Ti) and insulating titanium dioxide (TiO2) on the transport properties of single layer graphene. The deposition of Ti results in substantial n-type doping and a reduction of graphene mobility by charged impurity scattering. Subsequent exposure to oxygen largely reduces the doping and scattering by converting Ti into TiO2. In addition, we observe evidence for short-range scattering by TiO2 impurities. These results illustrate the contrasting scattering mechanisms for identical spatial distributions of metallic and insulating adsorbates

    Mott transitions in two-orbital Hubbard systems

    Full text link
    We investigate the Mott transitions in two-orbital Hubbard systems. Applying the dynamical mean field theory and the self-energy functional approach, we discuss the stability of itinerant quasi-particle states in each band. It is shown that separate Mott transitions occur at different Coulomb interaction strengths in general. On the other hand, if some special conditions are satisfied for the interactions, spin and orbital fluctuations are equally enhanced at low temperatures, resulting in a single Mott transition. The phase diagrams are obtained at zero and finite temperatures. We also address the effect of the hybridization between two orbitals, which induces the Kondo-like heavy fermion states in the intermediate orbital-selective Mott phase.Comment: 21 Pages, 17 Figures, to appear in Progress of Theoretical Physics (YKIS2004 Proceedings

    Yakiimo Koizumi: The Interpreter of Japan. (Illustrated.)

    Get PDF

    Graphene Spintronics

    Full text link
    The isolation of graphene has triggered an avalanche of studies into the spin-dependent physical properties of this material, as well as graphene-based spintronic devices. Here we review the experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin-orbit coupling and spin relaxation in graphene. Future research in graphene spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including topological states and proximity-induced phenomena in graphene and other 2D materials.Comment: 47 Pages, 6 figure

    Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk

    Get PDF
    Quantum walks, whose dynamics is prescribed by alternating unitary coin and shift operators, possess topological phases akin to those of Floquet topological insulators, driven by a time-periodic field. While there is ample theoretical work on topological phases of quantum walks where the coin operators are spin rotations, in experiments a different coin, the Hadamard operator is often used instead. This was the case in a recent photonic quantum walk experiment, where protected edge states were observed between two bulks whose topological invariants, as calculated by the standard theory, were the same. This hints at a hidden topological invariant in the Hadamard quantum walk. We establish a relation between the Hadamard and the spin rotation operator, which allows us to apply the recently developed theory of topological phases of quantum walks to the one-dimensional Hadamard quantum walk. The topological invariants we derive account for the edge state observed in the experiment, we thus reveal the hidden topological invariant of the one-dimensional Hadamard quantum walk.Comment: 11 pages, 4 figure

    Zero-temperature Phase Diagram of Two Dimensional Hubbard Model

    Full text link
    We investigate the two-dimensional Hubbard model on the triangular lattice with anisotropic hopping integrals at half filling. By means of a self-energy functional approach, we discuss how stable the non-magnetic state is against magnetically ordered states in the system. We present the zero-temperature phase diagram, where the normal metallic state competes with magnetically ordered states with (π,π)(\pi, \pi) and (2π/3,2π/3)(2\pi/3, 2\pi/3) structures. It is shown that a non-magnetic Mott insulating state is not realized as the ground state, in the present framework, but as a meta-stable state near the magnetically ordered phase with (2π/3,2π/3)(2\pi/3, 2\pi/3) structure.Comment: 4 pages, 4 figure
    corecore