8,056 research outputs found
Temporal 1/f^\alpha Fluctuations from Fractal Magnetic Fields in Black Hole Accretion Flow
Rapid fluctuation with a frequency dependence of (with ) is characteristic of radiation from black-hole objects. Its
origin remains poorly understood. We examine the three-dimensional
magnetohydrodynamical (MHD) simulation data, finding that a magnetized
accretion disk exhibits both fluctuation (with )
and a fractal magnetic structure (with the fractal dimension of ).
The fractal field configuration leads reconnection events with a variety of
released energy and of duration, thereby producing fluctuations.Comment: 5 pages, 4 figures. Accepted for publication in PASJ Letters, vol. 52
No.1 (Feb 2000
Direct Minimization Approaches on Static Problems of Membranes
Within this work, direct minimization approaches on static problems of membranes are discussed. In the first half, standard direct minimization methods are discussed. Some form-finding analyses of tension structures are also illustrated as simple direct minimization approaches. In the second half, the principle of virtual works for cables, membranes, and 3-dimensional bodies are examined and they are approximated in a common way by using
Galerkin method. Finally, some examples that direct minimization approaches can solve are reported
Topological defect formation in quenched ferromagnetic Bose-Einstein condensates
We study the dynamics of the quantum phase transition of a ferromagnetic
spin-1 Bose-Einstein condensate from the polar phase to the broken-axisymmetry
phase by changing magnetic field, and find the spontaneous formation of spinor
domain walls followed by the creation of polar-core spin vortices. We also find
that the spin textures depend very sensitively on the initial noise
distribution, and that an anisotropic and colored initial noise is needed to
reproduce the Berkeley experiment [Sadler et al., Nature 443, 312 (2006)]. The
dynamics of vortex nucleation and the number of created vortices depend also on
the manner in which the magnetic field is changed. We point out an analogy
between the formation of spin vortices from domain walls in a spinor BEC and
that of vortex-antivortex pairs from dark solitons in a scalar BEC.Comment: 10 pages, 11 figure
Inert-states of spin-5 and spin-6 Bose-Einstein condensates
In this paper we consider spinor Bose-Einstein condensates with spin f=5 and
f=6 in the presence and absence of external magnetic field at the mean field
level. We calculate all of so-called inert-states of these systems.
Inert-states are very unique class of stationary states because they remain
stationary while Hamiltonian parameters change. Their existence comes from
Michel's theorem. For illustration of symmetry properties of the inert-states
we use method that allows classification of the systems as a polyhedron with 2f
vertices proposed by R. Barnett et al., Phys. Rev. Lett. 97, 180412 (2006).Comment: 19 pages, 4 figure
Classical integrability of Schrodinger sigma models and q-deformed Poincare symmetry
We discuss classical integrable structure of two-dimensional sigma models
which have three-dimensional Schrodinger spacetimes as target spaces. The
Schrodinger spacetimes are regarded as null-like deformations of AdS_3. The
original AdS_3 isometry SL(2,R)_L x SL(2,R)_R is broken to SL(2,R)_L x U(1)_R
due to the deformation. According to this symmetry, there are two descriptions
to describe the classical dynamics of the system, 1) the SL(2,R)_L description
and 2) the enhanced U(1)_R description. In the former 1), we show that the
Yangian symmetry is realized by improving the SL(2,R)_L Noether current. Then a
Lax pair is constructed with the improved current and the classical
integrability is shown by deriving the r/s-matrix algebra. In the latter 2), we
find a non-local current by using a scaling limit of warped AdS_3 and that it
enhances U(1)_R to a q-deformed Poincare algebra. Then another Lax pair is
presented and the corresponding r/s-matrices are also computed. The two
descriptions are equivalent via a non-local map.Comment: 20 pages, no figure, further clarification and references adde
In-situ growth of superconducting NdFeAs(O,F) thin films by Molecular Beam Epitaxy
The recently discovered high temperature superconductor F-doped LaFeAsO and
related compounds represent a new class of superconductors with the highest
transition temperature (Tc) apart from the cuprates. The studies ongoing
worldwide are revealing that these Fe-based superconductors are forming a
unique class of materials that are interesting from the viewpoint of
applications. To exploit the high potential of the Fe-based superconductors for
device applications, it is indispensable to establish a process that enables
the growth of high quality thin films. Efforts of thin film preparation started
soon after the discovery of Fe-based superconductors, but none of the earlier
attempts had succeeded in an in-situ growth of a superconducting film of
LnFeAs(O,F) (Ln=lanthanide), which exhibits the highest Tc to date among the
Fe-based superconductors. Here, we report on the successful growth of
NdFeAs(O,F) thin films on GaAs substrates, which showed well-defined
superconducting transitions up to 48 K without the need of an ex-situ heat
treatment
- âŠ