372 research outputs found
Oscillatory behaviour in Type IA FBG: Ruling out chemical complexity
© 2015 SPIE. Type IA FBG are regenerated gratings that appear in hydrogenated germanosilicate fibre of all types during prolonged UV exposure. The gratings are characterised by a large Bragg wavelength shift and a concomitant increase in the mean fibre core index. Modulated index changes are complex by comparison and significantly weaker, often characterised by oscillatory growth behaviour. Low thermal stability of Type IA gratings suggests a possible chemical role similar to thermally processed optical fibres where autocatalysis has been observed. We show that GeOH and SiOH formation are not out-of-phase and follow each other, with no evidence of autocatalysis, ruling out a chemical origin
Evidence of chemical complexity and laser-driven autocatalysis in type IA FBGs
© OSA 2016. We observe the first chemical complexity for Type IA FBG growth under prolonged UV laser exposure. Out-of-phase oscillatory behaviour in GeOH/SiOH formation provides evidence of laser-driven autocatalysis and chemical origins for grating formation
Recommended from our members
Low-loss multimode interference couplers for terahertz waves
The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter
Embedding low loss polymer optical fibre Bragg gratings:two different approaches
In this paper, we present two different ways to embed polymer fibre Bragg gratings (FBGs) into polymer matrices. In the first experiment, we embedded the FBG into a 3D printed polymer structure, whereas in the second experiment, the coating was polymerized around the fibre. In both cases, the response of the grating was unchanged, without any loss or distortion of the FBG signal compared with the bare fibre response. The design of the polymer coating was optimised for the measurement of a single measurand. We highlighted two possible applications: surface bend deformation monitoring and improved-sensitivity temperature sensing
Recommended from our members
Low-loss multimode interference couplers for terahertz waves
The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter
870nm Bragg grating in single mode TOPAS microstructured polymer optical fibre
We report the fabrication and characterization of a fiber Bragg grating (FBG) with 870 nm resonance wavelength in a single-mode TOPAS microstructured polymer optical fiber (mPOF). The grating has been UV-written with the phasemask technique using a 325 nm HeCd laser. The static tensile strain sensitivity has been measured as 0.64 pm/µstrain, and the temperature sensitivity was -60 pm/°C. This is the first 870nm FBG and the first demonstration of a negative temperature response for the TOPAS FBG, for which earlier results have indicated a positive temperature response. The relatively low material loss of the fiber at this wavelength compared to that at longer wavelengths will considerably enhance the potential utility of the TOPAS FBG
Highly sensitive type IA fiber Bragg gratings as sensors in radiation environments
Type IA fiber gratings have unusual physical properties compared with other grating types. We compare with performance characteristics of Type IA and Type I Bragg gratings exposed to the effects of Co60 gamma-irradiation. A Bragg peak shift of 190 pm was observed for Type IA gratings written in Fibercore PS-1250/1500 photosensitive fiber at a radiation dose of 116 kGy. This is the largest wavelength shift recorded to date under radiation exposure. The Type IA and Type I gratings show different kinetics under radiation and during post-radiation annealing; this can be exploited for the design of a grating based dosimetry system
Photonic skin for pressure and strain sensing
In this paper, we report on the strain and pressure testing of highly flexible skins embedded with Bragg grating sensors recorded in either silica or polymer optical fibre. The photonic skins, with a size of 10cm x 10cm and thickness of 1mm, were fabricated by embedding the polymer fibre or silica fibre containing Bragg gratings in Sylgard 184 from Dow Corning. Pressure sensing was studied using a cylindrical metal post placed on an array of points across the skin. The polymer fibre grating exhibits approximately 10 times the pressure sensitivity of the silica fibre and responds to the post even when it is placed a few centimetres away from the sensing fibre. Although the intrinsic strain sensitivities of gratings in the two fibre types are very similar, when embedded in the skin the polymer grating displayed a strain sensitivity approximately 45 times greater than the silica device, which also suffered from considerable hysteresis. The polymer grating displayed a near linear response over wavelength shifts of 9nm for 1% strain. The difference in behaviour we attribute to the much greater Young's modulus of the silica fibre (70 GPa) compared to the polymer fibre (3 GPa)
Recommended from our members
Characterization of polymer nanowires fabricated using the nanoimprint method
In this paper, an ormocomp polymer nanowire with possible use in integrated-optics sensing applications is presented. We discuss the structure design, the fabrication process and present results of the simulation and characterization of the optical field profile. Since the nanowires are designed and intended to be used as integrated optics devices, they are attached to tapered and feed waveguides at their ends. The fabrication process in this work is based mainly on the nanoimprint technique. The method assumes a silicon nanowire as an original pattern, and polydimethylsiloxane (PDMS) as thesoft mold. The PDMS mold is directly imprinted on the ormocomp layer and then cured by UV light to form the polymer based nanowire. The ormocomp nanowires are fabricated to have various dimensions of width and length at a fixed 500nm thickness. The length of the nanowires is varied from 250 μm to 2 mm, whereas the width of the structures is varied between 500nm and 1μm. The possible optical mode field profile that occurs in the proposed polymer nanowire design is studied using the H-field finite element method (FEM). In the characterization part, the optical field profile and the intensity at the device output are the main focus of this paper. The various lengths of the nanowires show different characteristics in term of output intensity. An image processing is used to process the image to obtain the intensity of the output signal. A comparison of the optical field and output intensity for each polymer nanowire is also discussed
- …