7 research outputs found

    B-cell memory in malaria : Myths and realities

    Get PDF
    B-cell and antibody responses to Plasmodium spp., the parasite that causes malaria, are critical for control of parasitemia and associated immunopathology. Antibodies also provide protection to reinfection. Long-lasting B-cell memory has been shown to occur in response to Plasmodium spp. in experimental model infections, and in human malaria. However, there are reports that antibody responses to several malaria antigens in young children living with malaria are not similarly long-lived, suggesting a dysfunction in the maintenance of circulating antibodies. Some studies attribute this to the expansion of atypical memory B cells (AMB), which express multiple inhibitory receptors and activation markers, and are hyporesponsive to B-cell receptor (BCR) restimulation in vitro. AMB are also expanded in other chronic infections such as tuberculosis, hepatitis B and C, and HIV, as well as in autoimmunity and old age, highlighting the importance of understanding their role in immunity. Whether AMB are dysfunctional remains controversial, as there are also studies in other infections showing that AMB can produce isotype-switched antibodies and in mouse can contribute to protection against infection. In light of these controversies, we review the most recent literature on either side of the debate and challenge some of the currently held views regarding B-cell responses to Plasmodium infections

    Void formation in amorphous germanium due to high electronic energy depostition

    No full text
    The effect of high electronic energy deposition in amorphous germanium has been studied experimentally by Au irradiation with ion energies of up to 185 MeV and different angles of incidence and by molecular dynamics computer simulations. In both cases, the energy deposition leads to void formation accompanied by strong swelling of the amorphous germanium. The simulation results prove that the formation of the voids is mainly based on a shock wave mechanism and the swelling is determined by the competing processes of the formation and growth of voids on the one hand and the shrinking and annihilation of voids on the other hand. In full agreement between experiment and simulation, the amount of the swelling is a linear function of the total energy deposited into electronic processes and there exists a threshold value of the electronic energy loss per ion and depth for swelling. A comparison of the threshold values obtained by the experiment and the simulation suggests that approximately 20% of the energy deposited into electronic processes is converted into atomic motion

    Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts T-reg cells via regulation of MIP-3 alpha

    No full text
    The malignant Hodgkin/Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (HL) are derived from mature B cells, but have lost a considerable part of the B cell-specific gene expression pattern. Consequences of such a lineage infidelity for lymphoma pathogenesis are currently not defined. Here, we report that HRS cells aberrantly express the common cytokine-receptor gamma-chain (gamma(c)) cytokine IL-21, which is usually restricted to a subset of CD4(+) T cells, and the corresponding IL-21 receptor. We demonstrate that IL-21 activates STAT3 in HRS cells, up-regulates STAT3 target genes, and protects HRS cells from CD95 death receptor induced apoptosis. Furthermore, IL-21 is involved in up-regulation of the CC chemokine macrophage-inflammatory protein-3 alpha (MIP-3 alpha) inHRScells. MIP-3 alpha in turn attracts CCR6(+)CD4(+)CD25(+)FoxP3(+)CD127(lo) regulatory T cells toward HRS cells, which might favor their immune escape. Together, these data support the concept that aberrant expression of B lineage-inappropriate genes plays an important role for the biology of HL tumor cells

    A comprehensive analysis of the cellular and EBV-Specific MicroRNAome in primary CNS PTLD identifies different patterns among EBV-associated tumors

    No full text
    Primary central nervous system (pCNS) posttransplant lymphoproliferative disorder (PTLD) is a complication of solid organ transplantation characterized by poor outcome. In contrast to systemic PTLD, Epstein-Barr virus (EBV)-association of pCNS PTLD is almost universal, yet viral and cellular data are limited. To identify differences in the pattern of EBV-association of pCNS and systemic PTLD, we analyzed the expression of latent and lytic EBV transcripts and the viral and cellular microRNAome in nine pCNS (eight EBV-associated) and in 16 systemic PTLD samples (eight EBV-associated). Notably although 15/16 EBV-associated samples exhibited a viral type III latency pattern, lytic transcripts were also strongly expressed. Members of the ebv-miR-BHRF1 and ebv-miR-BART clusters were expressed in virtually all EBV-associated PTLD samples. There were 28 cellular microRNAs differentially expressed between systemic and pCNS PTLD. pCNS PTLD expressed lower hsa-miR-199a-5p/3p and hsa-miR-143/145 (implicated in nuclear factor kappa beta and c-myc signaling) as compared to systemic PTLD. Unsupervised nonhierarchical clustering of the viral and cellular microRNAome distinguished non-EBV-associated from EBV-associated samples and identified a separate group of EBV-associated pCNS PTLD that displayed reduced levels of B cell lymphoma associated oncomiRs such as hsa-miR-155, -21, -221 and the hsa-miR-17-92 cluster. EBV has a major impact on viral and cellular microRNA expression in EBV-associated pCNS PTLD
    corecore