860 research outputs found
A thermodynamically self-consistent theory for the Blume-Capel model
We use a self-consistent Ornstein-Zernike approximation to study the
Blume-Capel ferromagnet on three-dimensional lattices. The correlation
functions and the thermodynamics are obtained from the solution of two coupled
partial differential equations. The theory provides a comprehensive and
accurate description of the phase diagram in all regions, including the wing
boundaries in non-zero magnetic field. In particular, the coordinates of the
tricritical point are in very good agreement with the best estimates from
simulation or series expansion. Numerical and analytical analysis strongly
suggest that the theory predicts a universal Ising-like critical behavior along
the -line and the wing critical lines, and a tricritical behavior
governed by mean-field exponents.Comment: 11 figures. to appear in Physical Review
Gel transitions in colloidal suspensions
The idealized mode coupling theory (MCT) is applied to colloidal systems
interacting via short-range attractive interactions of Yukawa form. At low
temperatures MCT predicts a slowing down of the local dynamics and ergodicity
breaking transitions. The nonergodicity transitions share many features with
the colloidal gel transition, and are proposed to be the source of gelation in
colloidal systems. Previous calculations of the phase diagram are complemented
with additional data for shorter ranges of the attractive interaction, showing
that the path of the nonergodicity transition line is then unimpeded by the
gas-liquid critical curve at low temperatures. Particular attention is given to
the critical nonergodicity parameters, motivated by recent experimental
measurements. An asymptotic model is developed, valid for dilute systems of
spheres interacting via strong short-range attractions, and is shown to capture
all aspects of the low temperature MCT nonergodicity transitions.Comment: 12 pages, LaTeX, 5 eps figures, uses ioplppt.sty, to appear in J.
Phys.: Condens. Matte
Whole-Genome Sequence Analysis of an Extensively Drug-Resistant Salmonella enterica Serovar Agona Isolate from an Australian Silver Gull (Chroicocephalus novaehollandiae) Reveals the Acquisition of Multidrug Resistance Plasmids.
Although most of the approximately 94 million annual human cases of gastroenteritis due to Salmonella enterica resolve without medical intervention, antimicrobial therapy is recommended for patients with severe disease. Wild birds can be natural hosts of Salmonella that pose a threat to human health; however, multiple-drug-resistant serovars of S. enterica have rarely been described. In 2012, silver gull (Chroicocephalus novaehollandiae) chicks at a major breeding colony were shown to host Salmonella, most isolates of which were susceptible to antibiotics. However, multiple-drug-resistant (MDR) Escherichia coli with resistance to carbapenems, ceftazidime, and fluoroquinolones was reported from this breeding colony. In this paper, we describe a novel MDR Salmonella strain subsequently isolated from the same breeding colony. SG17-135, an isolate of S. enterica with phenotypic resistance to 12 individual antibiotics but only nine antibiotic classes including penicillins, cephalosporins, monobactams, macrolides, fluoroquinolones, aminoglycosides, dihydrofolate reductase inhibitors (trimethoprim), sulfonamides, and glycylcyclines was recovered from a gull chick in 2017. Whole-genome sequence (WGS) analysis of SG17-135 identified it as Salmonella enterica serovar Agona (S Agona) with a chromosome comprising 4,813,284 bp, an IncHI2 ST2 plasmid (pSG17-135-HI2) of 311,615 bp, and an IncX1 plasmid (pSG17-135-X) of 27,511 bp. pSG17-135-HI2 housed a complex resistance region comprising 16 antimicrobial resistance genes including blaCTX-M-55 The acquisition of MDR plasmids by S. enterica described here poses a serious threat to human health. Our study highlights the importance of taking a One Health approach to identify environmental reservoirs of drug-resistant pathogens and MDR plasmids.IMPORTANCE Defining environmental reservoirs hosting mobile genetic elements that shuttle critically important antibiotic resistance genes is key to understanding antimicrobial resistance (AMR) from a One Health perspective. Gulls frequent public amenities, parklands, and sewage and other waste disposal sites and carry drug-resistant Escherichia coli Here, we report on SG17-135, a strain of Salmonella enterica serovar Agona isolated from the cloaca of a silver gull chick nesting on an island in geographic proximity to the greater metropolitan area of Sydney, Australia. SG17-135 is closely related to pathogenic strains of S Agona, displays resistance to nine antimicrobial classes, and carries important virulence gene cargo. Most of the antibiotic resistance genes hosted by SG17-135 are clustered on a large IncHI2 plasmid and are flanked by copies of IS26 Wild birds represent an important link in the evolution and transmission of resistance plasmids, and an understanding of their behavior is needed to expose the interplay between clinical and environmental microbial communities
Are they ‘worth their weight in gold’? Sport for older adults: benefits and barriers of their participation for sporting organisations
The ageing global population has led to an increased focus on health for older adults. However, older adults have not been a specific priority for some sporting organisations (SOs). Thus, there is an emerging opportunity for this age group to be considered within international sport policy. The aim of this study was to understand the benefits and barriers that SOs encounter when engaging older adults. Eight focus group interviews (n = 49) were held with representatives of Australian national sporting organisations (NSOs), and older adults who were either sport club or non-sport club members. The socioecological model domains, interpersonal, organisational and policy, were used as a framework for thematic analysis, and organisational capacity building concepts were utilised to explain the findings. Common perceived benefits included interpersonal benefits (intergenerational opportunities and role models) and organisational benefits (volunteering, financial contributions and maximised facility usage) for engaging older adults. Common perceived barriers included interpersonal barriers (competing priorities and perceived societal expectations), organisational barriers (lack of appropriate playing opportunities, lack of facility access and lack of club capacity) and policy barriers (strategic organisational focus on children and elite sport and risk management). Whilst participation in sport is not common for older adults, their involvement can be invaluable for sport clubs. It is not anticipated that any policy focus on older adults will significantly increase active participation for this age group. However, any increase in older adults’ sport participation either through actively playing, supporting family and friends and/or volunteering will contribute to the positive health of individuals, sport clubs and the community.Peer reviewedFinal Accepted Versio
Engineering Schottky contacts in open-air fabricated heterojunction solar cells to enable high performance and ohmic charge transport.
The efficiencies of open-air processed Cu2O/Zn(1-x)Mg(x)O heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn(1-x)Mg(x)O and the indium tin oxide (ITO) top contact. By depositing Zn(1-x)Mg(x)O with a long band-tail, charge flows through the Zn(1-x)Mg(x)O/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High current densities are obtained by controlling the Zn(1-x)Mg(x)O thickness to ensure that the Schottky barrier is spatially removed from the p-n junction, allowing the full built-in potential to form, in addition to taking advantage of the increased electrical conductivity of the Zn(1-x)Mg(x)O films with increasing thickness. This work therefore shows that the Zn(1-x)Mg(x)O window layer sub-bandgap state density and thickness are critical parameters that can be engineered to minimize the effect of Schottky barriers on device performance. More generally, these findings show how to improve the performance of other photovoltaic system reliant on transparent top contacts, e.g., CZTS and CIGS.This work was supported by EPSRC of the UK (award number RG3717)This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/am5058663
Density anomaly in a competing interactions lattice gas model
We study a very simple model of a short-range attraction and an outer shell
repulsion as a test system for demixing phase transition and density anomaly.
The phase-diagram is obtained by applying mean field analysis and Monte Carlo
simulations to a two dimensional lattice gas with nearest-neighbors attraction
and next-nearest-neighbors repulsion (the outer shell). Two liquid phases and
density anomaly are found.
The coexistence line between these two liquid phases meets a critical line
between the fluid and the low density liquid at a tricritical point. The line
of maximum density emerges in the vicinity of the tricritical point, close to
the demixing transition
- …