452 research outputs found

    Effect of spin orbit scattering on the magnetic and superconducting properties of nearly ferromagnetic metals: application to granular Pt

    Full text link
    We calculate the effect of scattering on the static, exchange enhanced, spin susceptibility and show that in particular spin orbit scattering leads to a reduction of the giant moments and spin glass freezing temperature due to dilute magnetic impurities. The harmful spin fluctuation contribution to the intra-grain pairing interaction is strongly reduced opening the way for BCS superconductivity. We are thus able to explain the superconducting and magnetic properties recently observed in granular Pt as due to scattering effects in single small grains.Comment: 9 pages 3 figures, accepted for publication in Phys. Rev. Letter

    Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron

    Get PDF
    We report a measurement of the diffractive structure function FjjDF_{jj}^D of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pˉp\bar pp collisions at s=630\sqrt s=630 GeV at the Fermilab Tevatron. The ratio of FjjDF_{jj}^D at s=630\sqrt s=630 GeV to FjjDF_{jj}^D obtained from a similar measurement at s=1800\sqrt s=1800 GeV is compared with expectations from QCD factorization and with theoretical predictions. We also report a measurement of the ξ\xi (xx-Pomeron) and β\beta (xx of parton in Pomeron) dependence of FjjDF_{jj}^D at s=1800\sqrt s=1800 GeV. In the region 0.035<ξ<0.0950.035<\xi<0.095, t<1|t|<1 GeV2^2 and β<0.5\beta<0.5, FjjD(β,ξ)F_{jj}^D(\beta,\xi) is found to be of the form β1.0±0.1ξ0.9±0.1\beta^{-1.0\pm 0.1} \xi^{-0.9\pm 0.1}, which obeys β\beta-ξ\xi factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)

    Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS

    Get PDF
    The realtime follow-up of neutrino events is a promising approach to search for astrophysical neutrino sources. It has so far provided compelling evidence for a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 was observed in coincidence with the high-energy neutrino IceCube-170922A detected by IceCube. The detection of very-high-energy gamma rays (VHE, E > 100 GeV) from this source helped establish the coincidence and constrained the modeling of the blazar emission at the time of the IceCube event. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts sent by IceCube. This program has two main components. One are the observations of known gamma-ray sources around which a cluster of candidate neutrino events has been identified by IceCube (Gamma-ray Follow-Up, GFU). The second one is the follow-up of single high-energy neutrino candidate events of potential astrophysical origin such as IceCube-170922A. GFU has been recently upgraded by IceCube in collaboration with the IACT groups. We present here recent results from the IACT follow-up programs of IceCube neutrino alerts and a description of the upgraded IceCube GFU system

    Testing Hadronic Interaction Models with Cosmic Ray Measurements at the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory provides the opportunity to perform unique measurements of cosmic-ray air showers with its combination of a surface array and a deep detector. Electromagnetic particles and low-energy muons (∼GeV) are detected by IceTop, while a bundle of high-energy muons (>~400 GeV) can be measured in coincidence in IceCube. Predictions of air-shower observables based on simulations show a strong dependence on the choice of the high-energy hadronic interaction model. By reconstructing different composition-dependent observables, one can provide strong tests of hadronic interaction models, as these measurements should be consistent with one another. In this work, we present an analysis of air-shower data between 2.5 and 80 PeV, comparing the composition interpretation of measurements of the surface muon density, the slope of the IceTop lateral distribution function, and the energy loss of the muon bundle, using the models Sibyll 2.1, QGSJet-II.04 and EPOS-LHC. We observe inconsistencies in all models under consideration, suggesting they do not give an adequate description of experimental data. The results furthermore imply a significant uncertainty in the determination of the cosmic-ray mass composition through indirect measurements

    Design of a Robust Fiber Optic Communications System for Future IceCube Detectors

    Get PDF
    In this work we discuss ongoing development of a hybrid fiber/copper data and timing infrastructure for the future IceCube-Gen2 detector. The IceCube Neutrino Observatory is a kilometer-scale detector operating with 86 strings of modules. These modules communicate utilizing a custom protocol to mitigate the signaling challenges of long distance copper cables. Moving past the limitations of a copper-based backbone will allow larger future IceCube detectors with extremely precise timing and a large margin of excess throughput to accommodate innovative future modules. To this end, the upcoming IceCube Upgrade offers an opportunity to deploy a pathfinder for the new fiber optic infrastructure, called the Fiber Test System. This design draws on experience from AMANDA and IceCube and incorporates recently matured technologies such as ruggedized fibers and White Rabbit timing to deliver robust and high-performance data and timing transfer

    A Combined Fit of the Diffuse Neutrino Spectrum using IceCube Muon Tracks and Cascades

    Get PDF
    The IceCube Neutrino Observatory first observed a diffuse flux of high energy astrophysical neutrinos in 2013. Since then, this observation has been confirmed in multiple detection channels such as high energy starting events, cascades, and through-going muon tracks. Combining these event selections into a high statistics global fit of 10 years of IceCube’s neutrino data could strongly improve the understanding of the diffuse astrophysical neutrino flux: challenging or confirming the simple unbroken power-law flux model as well as the astrophysical neutrino flux composition. One key component of such a combined analysis is the consistent modelling of systematic uncertainties of different event selections. This can be achieved using the novel SnowStorm Monte Carlo method which allows constraints to be placed on multiple systematic parameters from a single simulation set. We will report on the status of a new combined analysis of through-going muon tracks and cascades. It is based on a consistent all flavor neutrino signal and background simulation using, for the first time, the SnowStorm method to analyze IceCube’s high-energy neutrino data. Estimated sensitivities for the energy spectrum of the diffuse astrophysical neutrino flux will be shown

    Density of GeV Muons Measured with IceTop

    Get PDF
    We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. We derive the muon densities as functions of energy at reference distances of 600 m and 800 m for primary energies between 2.5 PeV and 40 PeV and between 9 PeV and 120 PeV, respectively, at an atmospheric depth of about 690g/cm2^2. The measurements are consistent with the predicted muon densities obtained from Sibyll 2.1 assuming any physically reasonable cosmic ray flux model. However, comparison to the post-LHC models QGSJet-II.04 and EPOS-LHC shows that the post-LHC models yield a higher muon density than predicted by Sibyll 2.1 and are in tension with the experimental data for air shower energies between 2.5 PeV and 120 PeV

    Measurement of σB(Weν)\sigma \cdot B (W \to e \nu) and σB(Z0e+e)\sigma \cdot B(Z^0 \to e^+e^-) in ppˉp {\bar p} collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    We present a measurement of σB(Weν)\sigma \cdot B(W \to e \nu) and σB(Z0e+e)\sigma \cdot B(Z^0 \to e^+e^-) in proton - antiproton collisions at s=1.8\sqrt{s} =1.8 TeV using a significantly improved understanding of the integrated luminosity. The data represent an integrated luminosity of 19.7 pb1^{-1} from the 1992-1993 run with the Collider Detector at Fermilab (CDF). We find σB(Weν)=2.49±0.12\sigma \cdot B(W \to e \nu) = 2.49 \pm 0.12~nb and σB(Z0e+e)=0.231±0.012\sigma \cdot B(Z^0 \to e^+e^-) = 0.231 \pm 0.012~nb.Comment: Uses Latex, Article 12 point, figure appended as uuencoded file The full PostScript available via WWW at http://www-cdf.fnal.gov/physics/pub95/cdf3312_sigma_1a_prl_v3.p

    A Search for Neutrinos from Decaying Dark Matter in Galaxy Clusters and Galaxies with IceCube

    Get PDF
    The observed dark matter abundance in the Universe can be explained with non-thermal, heavy dark matter models. In order for dark matter to still be present today, its lifetime has to far exceed the age of the Universe. In these scenarios, dark matter decay can produce highly energetic neutrinos, along with other Standard Model particles. To date, the IceCube Neutrino Observatory is the world’s largest neutrino telescope, located at the geographic South Pole. In 2013, the IceCube collaboration reported the first observation of high-energy astrophysical neutrinos. Since then, IceCube has collected a large amount of astrophysical neutrino data with energies up to tens of PeV, allowing us to probe the heavy dark matter models using neutrinos. We search the IceCube data for neutrinos from decaying dark matter in galaxy clusters and galaxies. The targeted dark matter masses range from 10 TeV to 10 PeV. In this contribution, we present the method and sensitivities of the analysis
    corecore